选择合适的伺服电机系统需要知道的技术数据
选择合适的伺服电机系统需要知道的技术数据有:
1)力矩范围 中小力矩(一般在20Nm以下) 小中大,全范围
2)速度范围 低(一般在2000RPM以下,大力矩电机小于1000RPM) 高(可达5000RPM),直流伺服电机更可达1~2万转/分
3)控制方式 主要是位置控制 多样化智能化的控制方式,位置/转速/转矩方式
4)平滑性 低速时有振动(但用细分型驱动器则可明显改善) 好,运行平滑
5)精度 一般较低,细分型驱动时较高 高(具体要看反馈装置的分辨率)
6)矩频特性 高速时,力矩下降快 力矩特性好,特性较硬
7)过载特性 过载时会失步 可3~10倍过载(短时)
8)反馈方式 大多数为开环控制,也可接编码器,防止失步 闭环方式,编码器反馈
9)编码器类型 - 光电型旋转编码器,旋转变压器型
10)响应速度 一般 快
11)耐振动 好 一般(旋转变压器型可耐振动)
12)温升 运行温度高 一般
13)维护性 基本可以免维护 较好
14)价格的低高。
伺服电机怎么凋零
在电路板维修培训中,经常碰到有朋友问到伺服电机怎么凋零。这里就日系增量式伺服电机调零方式做一个简单的说明,希望能起到抛砖引玉的作用。
一般在编码器从伺服电机上拆下来后都需要进行调零,否则上机运行过程中就会报错,飞车等。像三菱,安川,松下,三洋增量式编码器的输出信号为方波信号,具备两相正交方波脉冲输出信号A和B,以及零位信号Z,其对齐方法如下:
1.给电机的UV绕组通以小于额定电流的直流电,V入,U出,将电机轴定向至一个平衡位置;
2.用示波器观察编码器的Z信号; 因为日系三菱,安川,松下,三洋等编码器走的都是不公开的协议,一般需要借助伺服驱动器来输出来,A,B,Z信号,这些伺服驱动器的说明书上都有详细的信号说明。
3.调整编码器转轴与电机轴的相对位置,调整的时候不要撤掉电源,让电机轴一直固定在平衡位置。
4.一边调整,一边观察编码器Z信号跳变,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 有些朋友喜欢用二极管接在z信号上,代替示波器,通过二极的发光来判断Z信号,因为电机每旋转圈,会发出一个Z信号。
5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。
你怎么看待伺服电机的发展前景?
近年来,部分企业的伺服电机、驱动器等产品已先后进入工业化生产阶段,但仍主要集中于数控机床行业,功率规格在400 W~7.2 KW之间,尚未为整个自动化控制行业形成标准系列产品。因为中国是一个制造大国,除了数控机床行业之外,其他行业对各种规格的伺服电机的需求也在逐年增加,为此,国外伺服电机生产商纷纷计划或已在国内设立独资工厂,利用当地资源和廉价劳动力,大量生产各种规格的通用伺服电机产品。
基于伺服电机和驱动,附加了 PLC和运动控制功能,并配有自身具有的网络通信功能,构成了独立的单轴运动控制器,能独立完成某些运动控制功能,如:点到点定位等,可广泛应用于自动化生产线等应用领域。控制系统及工业机器人自动化产品主要包括伺服电机、减速器、控制器、传感器等。随动马达是工业机器人的动力系统,一般安装在机器人的“关节”上,作为机器人运动的“心脏”。
机器人的关节驱动与伺服系统是分不开的,关节越多,机器人的灵活性和准确度越高,伺服马达的使用量就越大。对于伺服系统的要求很高,必须满足快速响应、高起动转矩、大的动转矩惯量比和宽广的调速范围,使其适应于机器人外形达到体积小、重量轻、加减速运行等条件,同时还需要高可靠性和稳定性。当前工业机器人大多采用交流伺服系统。
伺服电机在光纤激光切管机上的应用
随着伺服电机相关工业技术日新月异的发展,各个行业都面临着技术升级压力与降本的需求,激光切管机行业尤为如此。对用户而言,目前自动化市场上i流行的伺服产品都有着“价格合适,性能差;性能达标,价格高”的痛点,因此有着德系技术***的LEAD-MOTION应运而生。该应用直接对标日系某高i端品牌,测试结果在性能指标达到并超越该品牌的同时,满足了客户降本的需求,并且为客户未来进行产业升级打下了良好的基础。
光纤激光切管机的工作过程是由激光器发射激光,再通过光纤传导到切割i头,由镜片聚焦产生高能量,经切割嘴射出从而完成对金属管材的切割。伺服系统控制Z轴电机带动激光头上下运动,保持喷嘴与管材之间的距离不变,有效保证切割质量。W1,W2轴电机时刻保持高速同步旋转运动,Y轴负责管材的推进与回撤,X轴带动切割i头横向左右移动,Z轴更是具有高速动态响应性,不论管材如何变化,时刻保持着统一的切割高度,切出所需要的图案。
版权所有©2024 天助网