激光雷达的特点
与普通微波雷达du相比,激光雷达由于zhi使用的是激光束,工作频率dao较微波高了许多,因此带来了很多特点,主要有:
(1)分辨率高
激光雷达可以获得极高的角度、距离和速度分辨率。不过激光雷达发射的电磁波是一条直线,主要以光粒子发射为主要方法,而毫米波雷达发射出去的电磁波是一个锥状的波束,这个波段的天线主要以电磁辐射为主。通常角分辨率不低于0.1mard也就是说可以分辨3km距离上相距0.3m的两个目标(这是微波雷达无论如何也办不到的),并可同时跟踪多个目标;距离分辨率可达0.lm;速度分辨率能达到10m/s以内。距离和速度分辨率高,意味着可以利用距离——多谱勒成像技术来获得目标的清晰图像。分辨率高,是激光雷达的显著的优点,其多数应用都是基于此。
(2)隐蔽性好、抗有源干扰能力强
激光直线传播、方向性好、光束非常窄,只有在其传播路径上才能接收到,因此敌方截获非常困难,且激光雷达的发射系统(发射望远镜)口径很小,可接收区域窄,有意发射的激光干扰信号进入接收机的概率极低;另外,与微波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,适于工作在日益复杂和激烈的环境中。以上就是关于激光雷达产品的相关内容介绍,如有需求,欢迎拨打图片上的热线电话。
(3)低空探测性能好
微波雷达由于存在各种地物回波的影响,低空存在有一定区域的盲区(无法探测的区域)。而对于激光雷达来说,只有被照射的目标才会产生反射,完全不存在地物回波的影响,因此可以'零高度'工作,低空探测性能较微波雷达强了许多。
(4)体积小、质量轻
期望大家在选购激光雷达产品时多一份细心,少一份浮躁,不要错过细节疑问。想要了解更多激光雷达产品的相关资讯,欢迎拨打图片上的热线电话!!!
激光雷达在自动驾驶中的作用有哪些
激光雷达的原理在于向目标物体发射激光束,然后根据激光束发射-反射之间的时间间隔来确定距离目标物体的实际距离。特点在于测距,可以达到级别的精度。这样的测量为无人驾驶的后续算法提供了数据保障。
在3D环境感知方面,激光雷达可以实时扫描车辆周围的静态和动态障碍物,并依靠点云分类算法对障碍物进行分割和分类,输出给下游控制决策模块,规划决策控制模块根据不同的障碍物做出不同的行为决策,比如跟车,超车,停车等等。
在辅助定位方面,可以利用点云扫描结果提取feature,并与高精地图的数据进行对比匹配,从而
获取的物理位置。
或者基于点云的反射值强度,做基于反射值强度的概率匹配进行定位(百度apollo定位算法采用是这种方法),可以达到厘米级的定位精度。
激光雷达弥补了其他传感器的精度短板,但同时也有其自身的缺陷,比如在雨雪天气下的传感器噪声问题等。
以上就是为大家介绍的全部内容,希望对大家有所帮助。如果您想要了解更多激光雷达产品的知识,欢迎拨打图片上的热线联系我们。
激光雷达的广泛发展北京
随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足“数字地球”对测绘的要求。
LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因***定位系统及惯性导航系统的发展,使的即时定位及姿态确定成为可能。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。而基于MEMS的固态激光雷达,是通过微振镜的方式改变单个的发射角度进行扫描,由此形成一种面阵的扫描视野。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及的观测成果用空载激光扫瞄仪为主要的DTM生产工具。
如需了解更多激光雷达产品的相关内容,欢迎拨打图片上的热线电话!
激光雷达的分类
激光雷达按有无机械旋转部件分类,包括机械激光雷达和固态激光雷达。机械激光雷达带有控制激光发射角度的旋转部件,而固态激光雷达则依靠电子部件来控制激光发射角度,无需机械旋转部件。
机械激光雷达由光电二极管、MEMS反射镜、激光发射接受装置等组成,其中机械旋转部件是指图中可360°控制激光发射角度的MEMS发射镜。
固态激光雷达与机械雷达不同,它通过光学相控阵列(OpticalPhasedArray)、光子集成电路(PhotonicIC)以及远场辐射方向图(FarFieldRadiationPattern)等电子部件代替机械旋转部件实现发射激光角度的调整。3、测量距离:激光雷达所标称的距离大多以90%反光率的漫反射物体(如白纸)作为测试基准。
版权所有©2025 天助网