激光雷达lidar目前的技术难点在哪,关键技术都有哪些?
对旋转结构的激光雷达来说,关键技术之一是导电滑环,其次是校正工作的自动化问题,校正不能实现自动化,不但产量上不去,产品的一致性也很难保证。
对于全固态激光雷达来说,难的问题莫过于在不借助机械或尽量少借助机械结构的前提下,如何实现光路的偏转(发射),其次是如何实现激光回波的高信噪比检测(接收),目前能够看到的技术主要是两种:MEMS和相控阵。
MEMS技术的***是一个叫做微振镜的器件,通过对一块小镜子的高频振动,实现光路的偏转。MEMS技术比较成熟,缺点是存在激光的反射,反射过程中激光会有较大损失,导致回波信噪比偏低。
相控阵技术目前只有Quanergy在搞,将n×m个微功率的激光器集成到一个芯片上,通过相控阵技术实现激光的定向发射,这个技术如果能够成功,将***颠覆现有的机械式激光雷达,激光雷达扫描速度偏低的问题。
但是和MEMS一样,相控阵技术只解决了激光的发射问题,没有解决接收问题。到目前为止,相控阵技术的检测距离还是偏低的。不论是MEMS,还是相控阵,亦或是什么黑科技,只有同时解决激光的偏转(发射)和高信噪比接收,才能笑到后。
以下内容由北京北醒公司为您提供,今天我们来分享激光雷达产品的相关内容,希望对同行业的朋友有所帮助!
简单来说激光雷达主要是通过发射激光束来探测周遭环境,车载激光雷达普遍采用多个激光和,建立三维点云图,从而达到实时环境感知的目的。
激光雷达的优势在于其探测范围更广,探测精度更高。但是,激光雷达的缺点也很明显:在雨雪雾等***天气下性能较差;采集的数据量过大;十分昂贵。
技术上来讲,目前传统激光雷达技术已经很成熟,而固态激光雷达和混合固态激光雷达尚处于起步阶段,因此各企业当前在自动驾驶汽车使用的激光雷达,多以机械式激光雷达为主。
而从整个激光雷达行业来看,车载激光雷达产品生产商主要集中在国外,如美国的Velodyne、Quanegy,德国的IBEO,国内近几年也开始出现一些专注于车载激光雷达的企业,以及一些从其他领域转行而来的激光雷达企业,因看中自动驾驶汽车广阔发展前景,纷纷投身车载激光雷达产品的研发,目前来看成果显著。
所谓的毫米波雷达,就是指工作频段在毫米波频段的雷达,测距原理跟一般雷达一样,也就是把无线电波(雷达波)发出去,然后接收回波,根据收发之间的时间差测得目标的位置数据。毫米波雷达就是这个无线电波的频率是毫米波频段。
毫米波雷达从上世纪起就已在汽车中使用,技术相对成熟。毫米波的波长介于厘米波和光波之间,因此毫米波兼有微波制导和光电制导的优点,且其引导头具有体积小、质量轻和空间分辨率高的特点。此外,毫米波导引头穿透雾、烟、灰尘的能力强,相比于激光雷达是一大优势。
毫米波雷达的缺点也十分直观,探测距离受到频段损耗的直接制约(想要探测的远,就必须使用高频段雷达),也无法感知行人,并且对周边所有障碍物无法进行***的建模。
想要了解更多北京北醒公司的相关信息,欢迎拨打图片上的热线电话!
激光雷达在海洋探索和渔业资源监测
近年来,环境问题广受大家关注,而对海洋环境的保护已成共识,海洋激光雷达作为一种***的海洋探索与监测手段,已经成为主流。
激光雷达与海洋生物相关的应用主要体现在渔业资源调查和海洋生态环境监测两方面。前者常采用蓝绿脉冲光作为激发光源,通过对激光回波信号的识别提取以获得鱼群分布区域和密度信息,结合偏振特征分析可对鱼群种类进行识别;后者常采用海洋激光荧光雷达,通过对激光诱导目标物发射的荧光等光谱信号的探测分析以获得海洋浮游生物及叶绿素等物质的种类和浓度分布信息。
激光雷达可进行水下探物
美国诺斯罗普公司为美国高等级研究计划局研制的ALARMS机载水的雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下疑似目标。
美国卡曼航天公司研制成功的机载水下成像激光雷达,很大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。
版权所有©2024 天助网