钢管探伤设备涡流逆问题求解
换能器检测到的信号隐含缺陷位置、形状、大小及媒质性质等信息,由已知信号反推媒质参数(电导率)或形状(缺陷),属于电磁场理论中的逆问题。
为求解涡流逆问题,先要建立缺陷识别的数学模型,有形状规则的人工缺陷、边界复杂的自然缺陷、单缺陷和多缺陷等模型;在媒质类型方面,有复合材料和被测件表面磁导率变化等模型。
随着计算机技术发展,缺陷模型各种数值解法也获得进展。出现有限元法、矩量法和边界元法等。
钢管探伤设备超声探伤的发生和接收
声波是一种机械波,机械波是由机械振动产生的。声波的发生可以用电动扬声器。超声是一种高频机械波。发生水下超声可用磁致伸缩换能器,而工业探伤用的高频超声,是通过压电换能器产生的。压电材料主要采用石英、钛酸钡等。这些材料为什么能发生超声波,是因为她们具有压电效应,可能将电振动转换成机械振动,也能将机械振动转换成电振动。
要使压电材料产生超声,可把它切成能在一定频率下共振的片子,这种片子叫做晶片。将晶片两面都镀上银,作为电极。当高频电压加到这两个电极上时,晶片就在厚度方向产生伸缩,这样就把电震动转换成机械振动了。这种机械振动发生的超声,可传播到被检物中去。
反之,将高频机械振动传到晶片上时,晶片就被振动,在晶片两电极之间就会产生频率与超声相等、强度与超声成正比的高频电压。这个高频电压可经放大、被检,并显示在示波屏上。这就是超声波的接收。
钢管探伤设备相控检测探头排列
扇形阵和二维矩阵:扇形阵和二维矩阵都可实现所有方向的声束偏转和轴向聚焦,扇形阵多用于棒材检测,二维矩阵由于加工工艺限制、电路复杂及制作成本高等原因,仍主要应用于医学领域,工业领域应用较少,但其声束不仅能实现沿晶片排列方向的扫查,还可以纵向摆动扫查,因此其具有三维成像的优势,这将会是未来超声相控阵换能器的发展方向。
由于二维面阵探头还处于实验室研究的阶段,而作为一维线阵探头向二维面阵探头的过渡,一种被称为分数维的探头已经开始在一些的超声诊断仪中使用。分数维探头在长度方向上按传统方法被切割成致密的小阵元,而在宽度方向上则被切割成有限的几排;按宽度方向不同的聚焦功能,可分为1.25维、1.5维和1.75维,由于其阵元数成倍增加,对阵元连线等一系列加工工艺提出了更高的要求。
版权所有©2025 天助网