利用厌氧与好氧相结合的办法
虽然厌氧工艺具有去除率高的显著优点,但是该工艺不利的一面是在处理工程中会产生大量的气体。如果仅仅处理的话是会产生多余的费用。但是若是从环保的循环利用的角度出发,将所产生的气体用于垃圾渗滤液的处理过程中反倒会促使处理成本的进一步降低。就此而言,利用厌氧与好氧相结合的办法处理垃圾渗滤液尤其是对高浓度有机物的液体而言,不但能够利用厌氧工艺的优点还能同时结合好氧工艺的费用低的优点,可谓是互补的相得益彰。
混凝、电絮凝与吸附作为一种简单的处理技术
混凝、电絮凝与吸附 作为一种简单的处理技术,混凝可有效去除渗滤液中的可溶性有机物,还能提升出水的可生化性,但不能完全有效地去除有机物。而混凝的效果依赖于凝聚剂及操作条件。研究人员发现,pH值调控对渗滤液COD的去除效率为25%,,Fe3+则可达40%。 与混凝类似,利用电絮凝处理垃圾渗滤液能够有效去除水体中的有机物,相较于混凝,电絮凝反应、去除率高、产生的泥量小、停留时间短、操作便捷且无需化学试剂。但是,电絮凝对污染物的去除同样不够***。此外,渗滤液浓液中富集的Cl-和HA与FA在电絮凝的过程中可能会生成各种有毒卤代烃。 与膜技术、混凝以及电絮凝类似,吸附过程仅仅将污染物从水体中转移。目前,吸附主要应用于渗滤液处理过程中;常见的吸附剂包括飞灰、煤渣、膨润土、硅藻土、树脂、沸石以及活性炭等,但受制于吸附材料的选择性,吸附过程仅能有限去除部分污染物。
渗滤液经常温AOP处理后可进入生化反应器进行处理
常温AOP 目前,国内的渗滤液浓液处理以常温AOP为主。但单一常温AOP技术的处理效果较为有限;一般为芬顿及芬顿衍生的氧化、臭氧氧化、UV-TiO2以及超声几种技术。芬顿及其衍生的氧化技术会产生大量含铁污泥需要支付高昂的处理费用进行再处理。 为了提升净化效率降低固废量,可考虑光化学氧化、电化学氧化以及超声氧化等技术与臭氧/芬顿氧化耦合使用。研究表面UV-TiO2与臭氧氧化的有效结合使得水体DOC的去除效率提升至52.2%。光-芬顿氧化可将耗铁量和产泥量分别降低至原有的1/32和1/25。常温AOP不能将有机物完全氧化,但可有效提高水体可生化性。因此,渗滤液经常温AOP处理后可进入生化反应器进行处理。
工业反渗透设备元件膜的清洗周期
工业反渗透设备元件膜的清洗周期取决于现场的实际污染情况。正常清洁周期为每3-12个月一次。如果在一个月内清洗超过一次,则需要改进预处理,例如增加投资或重新设计工业反渗透设备。如果工业反渗透设备的清洗周期为1-3个月,则应重点调整和优化现有系统的运行参数。即使系统长时间没有受到污染,为了更好地保证系统的正常运行,可以考虑每6个月进行一次化学清洗。
版权所有©2024 天助网