数据库脱敏泄露风险可控
实现基于大数据平台的脱敏算法库,可并行,的按照脱敏规则对隐私数据进行脱敏。基于数据脱敏的理论基础,建立用户隐私数据泄露风险的衡量模型,可定性定量的准确衡量数据可能发生泄露的风险。可管理。结合大数据平台的用户认证体系,权限管理体系,以及隐私数据不同保护级别的权限管理体系,实现对隐私数据基于审批的数据访问机制。结合公司制度,规范,法务等管理,实现在尽可能保护用户隐私数据,减少数据泄露风险的前提下,较大化保留数据分析挖掘的价值。可审计。对数据的访问要保证可回溯,可审计,当发生数据泄露时,要保证能够通过审计日志找到对应的泄露人员。
为什么要进行数据脱敏?
我们要进行改造的数据是涉及到用户或者企业数据的安全,进行数据脱敏其实就是对这些数据进行加密,防止泄露。对于脱敏的程度,一般来说只要处理到无法推断原有的信息,不会造成信息泄露即可,如果修改过多,容易导致丢失数据原有特性。因此,在实际操作中,需要根据实际场景来选择适当的脱敏规则。改姓名,身份,地址,手机,电话号码等几个客户相关字段。
怎么用数据库脱敏?
动态数据脱敏,是在查询语句执行过程中,根据生效条件是否满足,实现实时的脱敏处理。生效条件,通常是针对当前用户角色的判断。敏感数据的可见范围,即是针对不同用户预设的。系统管理员,具有权限,任何时刻对任何表的任何字段都可见。确定受限制用户角色,是创建脱敏策略的开始的一步。
敏感信息依赖于实际业务场景和安全维度,以自然人为例,用户个体的敏感字段包括:姓名、身份号、手机、邮箱地址等等;在银行系统,作为客户,可能还涉及银行号、过期时间、支付密码等等;在公司系统,作为员工,可能还涉及薪资、教育背景等。
数据库脱敏实现背后的秘密
数据脱敏功能,基于SQL引擎既有的实现框架,在受限用户执行查询语句过程中,实现外部不感知的实时脱敏处理。关于其内部实现,如上图所示。我们将脱敏策略(Redaction Policy)视为表对象上绑定的规则,在优化器查询重写阶段,遍历Query Tree中TargetList的每个TargetEntry,如若涉及基表的某个脱敏列,且当前脱敏规则生效(即满足脱敏策略的生效条件且enable开启状态),则断定此TargetEntry中涉及要脱敏的Var对象,此时,遍历脱敏列系统表pg_redaction_column,查找到对应脱敏列绑定的脱敏函数,将其替换成对应的FuncExpr即可。
经过上述对Query Tree的重写处理,优化器会自动生成新的执行计划,执行器遵照新的计划执行,查询结果将对敏感数据做脱敏处理。带有数据脱敏的语句执行,相较于原始语句,增加了数据脱敏的逻辑处理,势必会给查询带来额外的开销。这部分开销,主要受表的数据规模、查询目标列涉及的脱敏列数、脱敏列采用的脱敏函数三方面因素影响。
版权所有©2024 天助网