活体脑化学物质实时分析系统
作为神经,大脑是运动,感觉,情感等生命活动的中心。因此,脑科学的研究对于理解和认识各种神经生理和病理过程的本质具有极其重要的意义。脑功能的神经信号传递绝大多数需要多种神经化学物质的共同参与,包括神经递质(如儿茶酚胺、谷氨酸,y-氨基丁酸,乙酰、神经肽等)神经调质(如抗坏血酸等),能量物质(如葡萄糖、乳酸、ATP等),离子(如H'.K* ,Na',Ca'*,CI等)以及其它重要的神经分子(如H,O, ,H,S,NO等)[1.2]。因此,建立和发展新的分析化学的原理和方法,在层次实现脑化学的动态监测,将极大推动对脑功能和脑疾病分子机制的研究。
活体脑化学物质实时分析系统交换膜
为了提高代氧化酶型生物传感器的选择性,研究人员曾在传感器的表面再覆盖一层离子交换膜[°]或者电化学聚合膜',从而抑制电化学活性物质(如抗坏血酸)向电极表面的扩散和的电化学氧化。抗坏血酸对于传感器的干扰也可通过在电极表面或在线电化学传感器上游引人抗坏血酸氧化酶修饰层或酶柱,预先氧化抗坏血酸进而消耗其含量实现(]。Baker等l在铂微电极表面电聚合邻苯二胺薄膜,并修饰以甲酯,醋酸纤维素等作为稳定剂,结合生物识别元件(氧化酶)实现了大鼠脑内的原位电化学分析。Li等(通过在葡萄糖氧化酶修饰的电极上电聚合一层邻苯二胺薄膜,提高了对葡萄糖的选择性,并将该阵列电极成功用于大鼠扩散性抑制过程中葡萄糖,O。和电生理活动的同时测定。他们发现,在SD过程中,脑内葡萄糖和氧分压会发生明显的变化。Chatard等l5利用气相沉积的方法在直径7 um 的碳纤维表面镀铂,再电聚合一层间苯二胺薄膜,较好地抑制了内源性电活性分子向电极表面的扩散。通过使用葡萄糖氧化酶和乳酸氧化酶,他们研制出了对脑组织创伤较小,但对于葡萄糖和乳酸具有良好响应的电化学生物传感器,成功用于脑神经生理病理模型中葡萄糖和乳酸动态变化的研究。他们还发现,在SD过程中,传统微电极和碳纤维微电极对葡萄糖和乳酸的响应表现出较大差异。
活体脑化学物质实时分析系统基于谷氨酸合成酶的生物传感
除了氧化酶和脱氢酶作为生物识别元件被广泛应用于电化学生物传感领域之外,自然界还存在着种类繁多的其它酶类,如固氮酶、氢化酶等,它们被应用于能源转换,电催化以及电合成等领域。针对目前基于氧化酶和脱氢酶的电化学传感器面临的一系列问题,基于其它酶类的电化学生物传感原理的设计和构筑显得尤为重要。谷氨酸合成酶是固氮过程中实现氨同化反应的关键酶,仅存在于微生物和高等植物部分组织中,并参与相应的氨基酸代谢和光转换等过程。目前,谷氨酸合成酶的晶体结构已被解析,但其在电催化领域的研究尚未被报道。2018年,Wu等[M]将蓝藻细菌中的铁氧化还原蛋白和以铁氧化蛋白为电子供体的谷氨酸合成酶在大肠体内完成重组和表达。该谷氨酸合成酶主要由氨基转移酶中心,黄素单核苷酸(Flavin mononucleotide , FMN)和铁-硫结合中心组成。
活体脑化学物质实时分析系统基于核酸适配体的生物传感
目前,Aptamer已成为诊断和的重要分子工具。与天然受体(如和酶)相比,Aptamer作为生物识别元件,在电化学生物传感领域具有很好的优势:(1)针对具体的靶标(从小分子到尺寸较大的蛋白质甚至细胞),理论上都可通过体外筛选的方法,得到具有高特异性和亲和力的 Aptamer; (2)Aptamer具有化学稳定性; (3 )Aptamer在与靶标结合时常能发生显著的构象变化,该特点可为高灵敏度和高选择性电化学生物传感原理的设计和构筑提供可能[!。2018年,Nakatsuka等![]在超薄金属氧化物场效应晶体管阵列上修饰能够特异性结合靶标的Aptamer,在生理条件下,实现了5-羟色胺、多巴胺﹑葡萄糖、1-磷酸神经鞘氨醇的选择性检测,如图10所示。靶标分子和 Aptamer结合诱导后者带负电的磷酸二酯骨架发生构象变化,引起栅极调控半导体通道导电能力的改变,进而实现了待测靶标的高灵敏检测。
版权所有©2024 天助网