活体脑化学物质实时分析系统
作为神经,大脑是运动,感觉,情感等生命活动的中心。因此,脑科学的研究对于理解和认识各种神经生理和病理过程的本质具有极其重要的意义。脑功能的神经信号传递绝大多数需要多种神经化学物质的共同参与,包括神经递质(如儿茶酚胺、谷氨酸,y-氨基丁酸,乙酰、神经肽等)神经调质(如抗坏血酸等),能量物质(如葡萄糖、乳酸、ATP等),离子(如H'.K* ,Na',Ca'*,CI等)以及其它重要的神经分子(如H,O, ,H,S,NO等)[1.2]。因此,建立和发展新的分析化学的原理和方法,在层次实现脑化学的动态监测,将极大推动对脑功能和脑疾病分子机制的研究。
活体脑化学物质实时分析系统代氧化酶型生物传感器
代氧化酶型生物传感器是利用О。作为氧化酶的电子受体,通过检测酶催化反应过程中H.0,的生成量,进而实现被测物浓度及其变化的传感分析。尽管目前大部分氧化酶型生物传感器是基于该原理研制而成,但是该类生物传感器仍面临诸多问题[*。一方面,0。作为酶催化反应的电子受体,其浓度随环境的波动将会影响传感器信号的稳定性;另一方面,H.0。的电化学氧化通常具有较高的过电位,而脑内共存的其它物种,如多巴胺及其代谢产物、抗坏血酸等,在此高电位下也能发生电化学氧化反应,进而干扰测定;虽然检测H0。的还原电流能够避免以上物质氧化的干扰,但由溶解氧电化学还原而产生的干扰仍是一个不可回避的问题。
微透析取样技术自1972年问世以来,已被广泛应用于神经科学、药学和分析化学等多学科的研究中I4]。作为取样技术,该技术一般需要结合样品分离和检测,方可实现与脑化学相关的研究。电化学生物传感器由于具有高选择性和传感界面设计多样性等优点,因此微透析技术和高选择性生物电化学传感的有效结合,可形成在线电化学分析系统(Online electrochemical system , OECS) ,实现部分神经分子(如葡萄糖、乳酸、谷氨酸等)的直接检测[]。相对于使用样品分离的离线分离分析,OECS 具有时间分辨率高,样品保真,易与行为学研究相结合等优点[]。但是,无需样品分离的直接检测方法要求在线电化学传感器应满足以下条件:(1)高选择性:应避免脑透析液中其它神经分子,如抗坏血酸、尿酸、多巴胺及其代谢物的干扰;(2)高灵敏度:可有效检测脑透析液中的低浓度物质,如多巴胺、谷氨酸、乙酰等;(3)良好的稳定性和重现性:可进行长时程的流动分析;(4)多组分同时分析:多个传感器之间应无交叉干扰;(5)与生理学研究的兼容性;能够实现在复杂脑神经生理和病理条件下对于特定神。
活体脑化学物质实时分析系统基于漆酶电化学生物传感器的分析
漆酶是一种蓝铜族氧化酶,可催化酚类物质的氧化和0。的还原”)。该酶含有的4个Cu位于蛋白的疏水空腔内,其中TI Cu*距蛋白表面约0.6 nm,是催化过程中接收外来电子的站,而由T2和T3Cu‘形成的三核铜簇是О,的结合位点,经由蛋白内电子传递途径接收来自Tl Cu'*的电子,从而将0。还原成H,0。目前,漆酶已被广泛应用于生物燃料电池、生物传感,废水处理等领域。漆酶的性质也为分析化学提供了新途径。多巴胺是一种儿茶酚胺类递质,参与神经信号的传递,在奖赏、运动,成瘾等过程中发挥无可替代的作用T]。多巴胺本身具有邻苯二酚的结构,也是漆酶的底物之一。基于多巴胺在电极表面发生电化学-化学-电化学反应的机理,Xiang等[']提出通过测定多巴胺氧化产物5,6-二羟基蚓吸琳醒的还原电流,进而间接测定多巴胺的新思想。他们利用漆酶催化多巴胺的步氧化反应,继而驱动后续反应的发生;其终产物5,6-二羟基蚓噪啉醍具有较好的电化学活性。
版权所有©2025 天助网