活体脑化学物质实时分析系统背景扣除
除上述方法外,背景扣除的方法也能消除干扰。Gerhardt研究组[誓~8]在阵列电极上设计自参照电极,将其电流信号作为背景信号,在具体的分析测定中予以扣除,这种方法可消除在相同的极化电位下其它物质对谷氨酸氧化酶修饰电极的干扰。他们首先在电极表面修饰一层Nafion ,避免抗坏血酸的干扰;随后,利用和牛白蛋白(Bovine serum albumin ,BSA)交联法将谷氨酸氧化酶固定至阵列电极表面,用于记录氧化电流的总和;相邻的自参照位点仅修饰BSA和,用于记录背景氧化电流。二者电流之差用于谷氨酸的定量分析(图1A)。他们利用局部注射谷氨酸的模型,成功地将该生物传感器用于鼠脑谷氨酸原位的实时监测,并实现了自由活动大鼠在静息状态及应激压力下脑内谷氨酸的长期监测。
活体脑化学物质实时分析系统基于谷氨酸合成酶的生物传感
除了氧化酶和脱氢酶作为生物识别元件被广泛应用于电化学生物传感领域之外,自然界还存在着种类繁多的其它酶类,如固氮酶、氢化酶等,它们被应用于能源转换,电催化以及电合成等领域。针对目前基于氧化酶和脱氢酶的电化学传感器面临的一系列问题,基于其它酶类的电化学生物传感原理的设计和构筑显得尤为重要。谷氨酸合成酶是固氮过程中实现氨同化反应的关键酶,仅存在于微生物和高等植物部分组织中,并参与相应的氨基酸代谢和光转换等过程。目前,谷氨酸合成酶的晶体结构已被解析,但其在电催化领域的研究尚未被报道。2018年,Wu等[M]将蓝藻细菌中的铁氧化还原蛋白和以铁氧化蛋白为电子供体的谷氨酸合成酶在大肠体内完成重组和表达。该谷氨酸合成酶主要由氨基转移酶中心,黄素单核苷酸(Flavin mononucleotide , FMN)和铁-硫结合中心组成。
脑化学物质实时分析系统
Burmeister等°设计了一种多位点的微电极阵列,实现了脑内和乙酰的同时原位测定。为了排除抗坏血酸和多巴胺的干扰,首先在铂电极表面电聚合一层间苯二胺膜。两个铂记录位点只修饰氧化酶,用于获取的浓度信息;另两个位点同时修饰乙酰酯酶和氧化酶,其电流信号与前者的差值即可用于乙酰的定量分析。
版权所有©2025 天助网