普通旺铺
北京MT100公司***「多图」
来源:2592作者:2022/2/8 17:38:00







活体脑化学物质实时分析系统

微透析取样技术自1972年问世以来,已被广泛应用于神经科学、药学和分析化学等多学科的研究中I4]。作为取样技术,该技术一般需要结合样品分离和检测,方可实现与脑化学相关的研究。电化学生物传感器由于具有高选择性和传感界面设计多样性等优点,因此微透析技术和高选择性生物电化学传感的有效结合,可形成在线电化学分析系统(Online electrochemical system , OECS) ,实现部分神经分子(如葡萄糖、乳酸、谷氨酸等)的直接检测[]。相对于使用样品分离的离线分离分析,OECS 具有时间分辨率高,样品保真,易与行为学研究相结合等优点[]。但是,无需样品分离的直接检测方法要求在线电化学传感器应满足以下条件:(1)高选择性:应避免脑透析液中其它神经分子,如抗坏血酸、尿酸、多巴胺及其代谢物的干扰;(2)高灵敏度:可有效检测脑透析液中的低浓度物质,如多巴胺、谷氨酸、乙酰等;(3)良好的稳定性和重现性:可进行长时程的流动分析;(4)多组分同时分析:多个传感器之间应无交叉干扰;(5)与生理学研究的兼容性;能够实现在复杂脑神经生理和病理条件下对于特定神。







活体脑化学物质实时分析系统基于谷氨酸合成酶的生物传感

除了氧化酶和脱氢酶作为生物识别元件被广泛应用于电化学生物传感领域之外,自然界还存在着种类繁多的其它酶类,如固氮酶、氢化酶等,它们被应用于能源转换,电催化以及电合成等领域。针对目前基于氧化酶和脱氢酶的电化学传感器面临的一系列问题,基于其它酶类的电化学生物传感原理的设计和构筑显得尤为重要。谷氨酸合成酶是固氮过程中实现氨同化反应的关键酶,仅存在于微生物和高等植物部分组织中,并参与相应的氨基酸代谢和光转换等过程。目前,谷氨酸合成酶的晶体结构已被解析,但其在电催化领域的研究尚未被报道。2018年,Wu等[M]将蓝藻细菌中的铁氧化还原蛋白和以铁氧化蛋白为电子供体的谷氨酸合成酶在大肠体内完成重组和表达。该谷氨酸合成酶主要由氨基转移酶中心,黄素单核苷酸(Flavin mononucleotide , FMN)和铁-硫结合中心组成。







活体脑化学物质实时分析系统基于核酸适配体的生物传感

目前,Aptamer已成为诊断和的重要分子工具。与天然受体(如和酶)相比,Aptamer作为生物识别元件,在电化学生物传感领域具有很好的优势:(1)针对具体的靶标(从小分子到尺寸较大的蛋白质甚至细胞),理论上都可通过体外筛选的方法,得到具有高特异性和亲和力的 Aptamer; (2)Aptamer具有化学稳定性; (3 )Aptamer在与靶标结合时常能发生显著的构象变化,该特点可为高灵敏度和高选择性电化学生物传感原理的设计和构筑提供可能[!。2018年,Nakatsuka等![]在超薄金属氧化物场效应晶体管阵列上修饰能够特异性结合靶标的Aptamer,在生理条件下,实现了5-羟色胺、多巴胺﹑葡萄糖、1-磷酸神经鞘氨醇的选择性检测,如图10所示。靶标分子和 Aptamer结合诱导后者带负电的磷酸二酯骨架发生构象变化,引起栅极调控半导体通道导电能力的改变,进而实现了待测靶标的高灵敏检测。





王经理 (业务联系人)

15201589567

商户名称:北京铭泰佳信科技有限公司

版权所有©2025 天助网