直接驱动电机
普通的伺服电机要实现低速大扭矩输出时,必须加减速机等减速机构,以实现降低转速,提升扭矩。虽然这种解决办法可以实现低速大扭矩的运行,但在此过程中,由于加入了减速机构,降低了系统的精度及效率。给系统带来了能量损耗、精度损失、噪音等等不良后果。为低速大扭矩输出,不用减速机构,直接与负载相连。消除了由于减速机构所带来的不良后果,整体上提高了系统的精度。另外,由于马达本身的高定位精度、高响应速度等特点,更好的保证和提高了系统的精度,简化了系统结构,同时,也节省成本。
1.轴向、径向跳动。传统的机械连接,驱动转台时,由于转台部份的机械安装等原因,使转台在轴向、径向机械跳动较大,影响系统精度。较大小了系统的轴向、径向机械跳动值。使系统的运行精度、测量精度得到限度提升。
2.通孔设计。以往的旋转动力提供产品,一般为轴输出型。遇到走线或通过其它物料等情况,就要用其它机械连接来实现。驱动旋转负载的同时,可满足走线、通过物料等需求,免除其它机械安装等。
3.高动态响应。对于一些需要高响应特性的应用,如频繁的定位等,普通的伺服机难在实现。实现了40KPH的超高分选效率。这是其它伺服类产品所做不到的。在频繁高速、高精度定位的使用场合,
直接驱动系统省去了很多组件与传动部件,简化了整体机械设计,使整个系统非常紧凑。直接驱动系统拥有高精度、高可靠性的特点,重要的是不需要维护。没有皮带或齿轮箱等机械动力传动部件,只需要电机和螺栓即可安装。这样一来,不仅让机械制造商的设备制造更加容易,也使得终端用户的应用集成更加简单。直接驱动就是在驱动系统控制下,将直驱电机(力矩或直线)直接连接到负载上,实现对负载的直接驱动。
直接驱动电机-伺服电机
在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。伺服电机是可以连续旋转的电-机械转换器。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。作为液压阀控制器的伺服电机,属于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机较为常用。
版权所有©2024 天助网