数据治理过程
从范围来讲,数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,从***到终端再回到***形成一个闭环负反馈系统(控制理论中趋稳的系统)。从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合。
数据治理数据脱敏
数据脱敏不仅仅是代名词,同样也蕴含着复杂且多样的脱敏技术能力。在不同环境下,企业对于敏感数据脱敏的要求也不尽相同。例如:脱敏后的数据要求性、可用性、完整性等。通常来说,市面上多数的脱敏产品中可通过内置的规则对、姓名、等常用的敏感数据实现脱敏,并满足后续的测试、使用等需求,而更多真实环境中,往往需要脱敏的
敏感数据实际在脱敏操作中更为复杂化。
数据治理数据脱敏后数据依然具备业务规则关联性
派客动力脱敏平台根据该银行需求,保障脱敏后的数据依然具备供企业使用、分析的能力,具备能让业务可靠运行的能力。因此,脱敏后的数据能够保有原始数据的业务属性和数据分布特征,例如:原始数据中的姓名、地址等信息,需要在脱敏后依然具有可读性,脱敏后的数据满足业务系统的数据规则,能够正确的通过业务系统的数据有效性验证,如号、号的校验位,生日的区间等。
数据治理
GDPR对中国的影响也是显而易见的,《网络安全法》以及我国各行业法规规定了数据的存储、处理、访问等必须在境内进行,这与GDPR的监管要求存在冲突,GDPR赋予了欧盟各监管机构调查数据的权利,欧盟以外的企业为欧盟境内的数据主体提供服务或监控其行为,则纳入GDPR的长臂管辖范围。受限于中国与欧盟间不同的政策法规以及相关标准限制,GDPR的出现无疑给我国的和企业抛出了一道难题,是修改自己的合规要求同GDPR保持一致,还是舍弃庞大的欧盟市场?相对于GDPR更为明确的惩处力度,相信会有企业选择遵守GDPR,从而漠视中国的法律法规,因此GDPR的出现无疑会削弱我国法律的约束力。
版权所有©2025 天助网