数据治理成为未来发展主流
面对新经济发展模式,新的机遇和挑战,很显然引导和参与下,社会将投入更多的资源,形成新一轮的数字化建设的浪潮。那么,数据化建设的方向、数据化建设的内容,在此期间将会有哪些特点,本文从多方面给予论述,为企业发展提供简明的思路。
作为未来的发展前沿,离不开数字化基础。数字化浪潮虽然可以促进企业的快速发展,推动信息的流动,但是离不开企业信息化发展的规律。企业仍会从业务系统开始,逐步构筑数据融合的信息平台再构筑跨管辖权的数据交换平台。这个发展规律,决定了企业未来的数字项目内容,这些内容将是未来的发展主流。
数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
数据治理数据分类
大家都知道我们擅长做数据分类分级,对于我们来说,这确实是一个老生常谈的问题,但在整个数据安全领域中,它却又是般的存在,不得不提。散落在企业各个存储角落的那些数据,在业务维度上,都属于哪个业务域、哪条业务线、哪个业务系统、哪个业务项、哪个业务分类,这些被贴上了业务标签的数据,将更容易从业务视角进行解读,为数据分级打下根基。从数据资产化的角度来看,数据分类可以独立存在,然而数据分级在某种程度上来说,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。
派客动力数据治理
派客动力敏感数据发现系统具备智能记忆功能,用户已经确认的敏感字段无需重复确认。系统按照用户的敏感数据或已进行预设的敏感数据特征去系统中筛查敏感数据,筛查出的结果会经人工干预进行确认,为了快速确认敏感数据,可利用系统中的批量设置功能,不再需要一个字段一个字段的查看,通过找到与该字段有关联的敏感数据进行批量确认即可。当表结构根据业务发生变化时,系统自动开启的智能记忆功能,将已确认好的敏感数据不再进行二次及多次发现。
版权所有©2024 天助网