数据治理相关
没有直接访问 MDM 系统权限的客户服务代表通常必须搜索几个系统,找到他们需要的信息,从而采取措施。当通话中的客户没有耐心时,很难提供别的服务。当所有信息存储在 MDM 系统中并可通过有效、用户友好的前端进行访问时,客户服务代表将能够访问每个客户交互需要的所有数据,并能够在需要时授权新数据。
通过使 MDM 成为录入系统及记录系统,您能从本质上将数据维持在“零延迟”状态,它在这种状态下适合企业中的任何预期使用场景,同步到 CRM 和 ERP 系统的数据的清洁性、性、时效性以及一致性应当处于别。
数据治理包含
这里包括对业务、数据、应用、组织架构、法律法规等方方面面的认知。举个例子:你的业务战略目标是什么,业务域、业务线、业务项能不能说清楚;你有多少结构化数据、半结构化数据、非结构化数据,数据体量有多大,都存哪,使用场景、使用角色都是什么,数据和业务之间的关系是什么;你建设了多少应用系统,应用和业务之间的关系是什么;你的组织架构长什么样,流程什么样,不同部门之间的关系是什么,权责利如何划分,信息化成熟度什么样,人员技能又如何;你的企业要遵守哪些法律法规,有没有跨境业务,行业有没有监管要求?
数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
数据治理数据脱敏后数据依然具备业务规则关联性
派客动力脱敏平台根据该银行需求,保障脱敏后的数据依然具备供企业使用、分析的能力,具备能让业务可靠运行的能力。因此,脱敏后的数据能够保有原始数据的业务属性和数据分布特征,例如:原始数据中的姓名、地址等信息,需要在脱敏后依然具有可读性,脱敏后的数据满足业务系统的数据规则,能够正确的通过业务系统的数据有效性验证,如号、号的校验位,生日的区间等。
版权所有©2024 天助网