数据治理数据形态
作为数据安全工作者,了解企业自身数据的步就是数据形态的认知。数据体量有多大,是TB、PB还是ZB级?哪些是结构化数据、哪些是半结构化数据、哪些是非结构化数据?这些数据都存储在哪里,企业都用到了哪些种数据库,是传统的关系型数据库、Mpp数据库、K-V数据库还是基于Hadoop的数据库?这些数据的增量情况如何等等,都属于数据形态的范畴,都需要梳理了解。
数据治理数据使用角色
这属于数据安全管理的范畴。保障数据安全,不仅需要技术手段,还需要常态化的管理机制做支撑。其中的就是要梳理数据使用的角色、流程以及场景。数据使用角色通常包括数据管理者、数据所有者、数据生产者、数据使用者等,是数据访问或使用权限,以及数据泄露以后的问责主体;数据使用流程是否健全,是企业数据安全管理成熟度的体现。
数据治理数据安全
近年来,关于数据安全问题已然成为世界性的热门话题。对此,各国对网络安全、敏感数据保护、个人隐私保护等出台了一系列的法律、法规和行业政策,并不断的加以完善,有效对其不轨行为进行了法律层面的约束。
同时,随着信息技术时代的不断发展,大量的信息、数据贯穿整个企业多个环节,为保护企业内部数据资产安全,如何解决数据流通时所带来的安全威胁成为重中之重。
数据治理
敏感数据一旦泄露会给个人及社会带来严重危害,甚至对企业及组织带来不可估量的损失,那敏感数据到底有哪些呢?除法律、法规内界定的敏感数据(号、姓名、住址、银行帐号等)外,还有企业或组织机构不适合公开的数据,如企业的营业数据、网络结构等。但如何鉴别和分类敏感数据却存在诸多矛盾,由于不同地域、不同法律或部门也可能对同一类的数据归类不尽相同,这也给识别敏感数据带来一定的难度。
版权所有©2024 天助网