数据治理数据适用、加工活动
数据处理活动需要具备明确的目的,并被用户授权;
处理生物识别、健康、金融账户、行踪轨迹等敏感个人信息,应取得个人的单独同意;
通过自动化决策方式向个人进行信息推送、商业营销,应提供不针对其个人特征的选项或提供便捷的拒绝方式。
数据传输、提供、公开活动
未经用户授权,数据信息不得向第三方传输和提供;
数据信息特定目的适用,未经授权不得不公开;数据信息不得泄露的原则。
数据治理数字标准
数字化社会的体现标志是什么,笔者认为数字化社会的标志不是数字应用场景的具体化,也不是数据应用的多样化,而是全社会对数字有一个共同的标准、共同的规范,所有的数字化活动应遵循相关的要求,比如分类分级标准、数据安全规范、数据保护条例等等。
全社会将从行业归属角度,逐步建立数据分类分级标准,其中离不开的引导,分类分级的标准将是未来数据大融合、一个数据标准的数据基石,如何做好分类分级,凝聚社会共识,该类工作将会以咨询的方式完成规划,以公示的方式完成补充,形成数据分类分级标准。
数据治理内容服务将是
数字化社会的建立,从技术上可以分为很多架构,从应用上也有众多分支,透过众多的表现形式,笔者通过比对各类数据建设方案,分析各种应用场景,可以看出数据化建设的本身越来越互联网化,其主要特征就是服务为王,如何从数字化浪潮中构筑新型的服务内容,提供高效的场景化解决方案将是未来的重中之重。
智慧型交通、城市大脑、新型农村、数字金融、远程、异地协同、AI教育等等,笔者不在此列举,这些平台的特点都是是数字驱动型,都是未来的发展的重点,但是这些平台提供的服务才是关键,才是数字化平台生命力所在。
与之相应的技术型企业,只有扎根企业,提供行业解决方案,提供场景化功能服务,才能在数字化浪潮中绽放光芒。
派客动力数据治理方面实力
确保业务对象完整性:基于完整的业务对象进行脱敏操作,确保不破坏数据的二义性以及业务关联性。内置多种脱敏算法:系统内包含函数、初级、算法模式,用户可根据实际业务场景需求,对敏感数据通过自定义算法生成规则从而使敏感数据转换为虚构数据。同时支持抽取式、本库脱敏:系统支持抽取式脱敏和本库脱敏两种方式,是业内一款同时支持抽取式不落地脱敏以及就地脱敏两种模式的脱敏系统。任务监控:用户可通过监控监测所有计划开展的任务进度、包括测试数据抽取、子集抽取和发现、脱敏任务等。
版权所有©2024 天助网