数据治理相关
没有直接访问 MDM 系统权限的客户服务代表通常必须搜索几个系统,找到他们需要的信息,从而采取措施。当通话中的客户没有耐心时,很难提供别的服务。当所有信息存储在 MDM 系统中并可通过有效、用户友好的前端进行访问时,客户服务代表将能够访问每个客户交互需要的所有数据,并能够在需要时授权新数据。
通过使 MDM 成为录入系统及记录系统,您能从本质上将数据维持在“零延迟”状态,它在这种状态下适合企业中的任何预期使用场景,同步到 CRM 和 ERP 系统的数据的清洁性、性、时效性以及一致性应当处于别。
数据治理数据适用、加工活动
数据处理活动需要具备明确的目的,并被用户授权;
处理生物识别、健康、金融账户、行踪轨迹等敏感个人信息,应取得个人的单独同意;
通过自动化决策方式向个人进行信息推送、商业营销,应提供不针对其个人特征的选项或提供便捷的拒绝方式。
数据传输、提供、公开活动
未经用户授权,数据信息不得向第三方传输和提供;
数据信息特定目的适用,未经授权不得不公开;数据信息不得泄露的原则。
数据治理让数据更安全
这是一个很现实也很棘手的问题。大家都知道数据安全的重要性,都要做数据安全,也知道数据安全的几种思路方法,然而真正要做的时候,却发现根本无从下手,只能参考其它同类企业,人家采购了什么,自己就采购什么,或者监管机构要求做什么,就采购什么。至于数据安全软件买来怎么用,或者究竟能派上多大用场,没人能说得清。其实,造成这种局面的本质原因就是企业对自身的数据缺乏认知,解决了数据认知问题,数据安全的落地便是水到渠成的了。所以,与其谈论该如何做数据安全,不如谈谈该如何提升数据认知能力。
数据治理数据使用场景
场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,例如数据脱敏,同一数据域在不同场景下的脱敏规则等。
真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。
版权所有©2024 天助网