数据治理数据性要求
作为数据应用的内容本身,将会有更多的性要求,因此,数据整个生命周期的安全将是企业在数字化融合下的重要考量内容,数据在采集、传输、处理、交换、销毁全生命中,应该采用哪些技术手段,保障数据不被获取,数据如何管理才能平衡业务发展和安全管控之间矛盾。于此相关的数据技术、数据库审计技术、数据交换技术、网络监控技术等的,该类技术在数字化建设浪潮中将迎来快速发展的机遇。
数据治理数据使用场景
场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,例如数据脱敏,同一数据域在不同场景下的脱敏规则等。
真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。
数据治理步骤
共享数据准备阶段
共享数据提供方根据共享业务需求完成共享数据归集、数据分类分级,并对共享数据进行持续性的维护,保证共享数据的准确、完整、可用和真实。
共享数据交换阶段
需对交换服务的资源方和使用方之间提供审核及授权等权限,共享数据交换服务方采用身份鉴别、访问控制、安全传输、过程追溯等技术手段,保证信息共享交换过程中交换实体可信、数据传输安全、交换行为记录可追查。
数据治理数据脱敏
派客动力脱敏系统采用的静态脱敏方式,可以从元数据、数据的角度在海量业务系统的数据中快速发现敏感数据,并定位敏感数据的存储与分布,统计敏感数据量级。并且支持用户自定义发现规则、通过设置敏感字段对企业系统中的表和列进行扫描定位,利用专门的脱敏算法对敏感数据进行变形、屏蔽、替换、随机化等处理,将敏感数据转化为虚构数据,隐藏了真正的隐私信息,为数据的安全使用提供了基础保障。同时脱敏后的数据可以保留原有的数据特征与分布,无需改变相应的业务逻辑,实现了企业低成本、、安全的使用生产的隐私数据。
版权所有©2024 天助网