应对型数据治理缺点
批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不的主数据。因此,这会降低多领域 MDM 方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。
数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
数据治理数据使用角色
这属于数据安全管理的范畴。保障数据安全,不仅需要技术手段,还需要常态化的管理机制做支撑。其中的就是要梳理数据使用的角色、流程以及场景。数据使用角色通常包括数据管理者、数据所有者、数据生产者、数据使用者等,是数据访问或使用权限,以及数据泄露以后的问责主体;数据使用流程是否健全,是企业数据安全管理成熟度的体现。
数据治理数据脱敏
数据脱敏不仅仅是代名词,同样也蕴含着复杂且多样的脱敏技术能力。在不同环境下,企业对于敏感数据脱敏的要求也不尽相同。例如:脱敏后的数据要求性、可用性、完整性等。通常来说,市面上多数的脱敏产品中可通过内置的规则对、姓名、等常用的敏感数据实现脱敏,并满足后续的测试、使用等需求,而更多真实环境中,往往需要脱敏的
敏感数据实际在脱敏操作中更为复杂化。
版权所有©2024 天助网