数据治理内容
以企业财务管理为例,会计负责管理企业的金融资产,遵守相关制度和规定,同时接受审计员的监督;审计员负责监管金融资产的管理活动。数据治理扮演的角色与审计员类似,其作用就是确保企业的数据资产得到正确有效的管理。
由于切入视角和侧重点不同,业界给出的数据治理定义已经不下几十种,到目前为止还未形成一个统一标准的定义。
ITSS WG1认为数据治理包含以下几方面内容
(1)确保信息利益相关者的需要评估,以达成一致的企业目标,这些企业目标需要通过对信息资源的获取和管理实现;
(2)确保有效助力业务的决策机制和方向;
(3)确保绩效和合规进行监督。
数据治理主动型治理
主动数据治理的个优势是可在根源获得主数据。具有严格的“搜索后再创建”功能和强大的业务规则,确保关键字段填充经过批准的值列表或依据第三方数据验证过,新记录的初始质量级别将非常高。
主数据管理工作通常着重于数据质量的“使它干净”或“保持它干净”方面。
如果 MDM 系统中的数据质量初始级别非常高,并且如果您不会通过从 CRM 或 ERP 源系统中传入不、不完整或不一致的数据来连续污染系统,则主数据管理的“保持它干净”方面非常容易。
主动数据治理还可有效消除新主记录的初始录入和其认证以及通过中间件发布到企业其余领域之间的所有时间延迟。由用户友好的前端支持的主动数据治理可将数据直接录入到多领域 MDM 系统中,可应用所有典型的业务规则,以整理、匹配和合并数据。当初始数据录入经过整理、匹配和合并流程后,此方法还允许数据管理员通过企业总线将更新发布到组织的其它领域。
派客动力数据治理方面实力
确保业务对象完整性:基于完整的业务对象进行脱敏操作,确保不破坏数据的二义性以及业务关联性。内置多种脱敏算法:系统内包含函数、初级、算法模式,用户可根据实际业务场景需求,对敏感数据通过自定义算法生成规则从而使敏感数据转换为虚构数据。同时支持抽取式、本库脱敏:系统支持抽取式脱敏和本库脱敏两种方式,是业内一款同时支持抽取式不落地脱敏以及就地脱敏两种模式的脱敏系统。任务监控:用户可通过监控监测所有计划开展的任务进度、包括测试数据抽取、子集抽取和发现、脱敏任务等。
版权所有©2024 天助网