数据治理应对型治理
应对型数据治理是指通过客户关系管理 (CRM) 等“前台”应用程序和诸如 企业资源规划 (ERP) 等“后台”应用程序授权主数据,例如客户、产品、供应商、员工等。然后,数据移动工具将新的或更新的主数据移动到多领域 MDM 系统中。它整理、匹配和合并数据,以创建或更新“黄金记录”,然后同步回原始系统、其它企业应用程序以及数据仓库或商业智能分析系统。
数据治理管理规范
数据化建设过程中的管理规范,更多体现在数据融合和交换的管理方法中,该类方法是以应用软件为载体的数据管理类规范,通常在不同应用行业、不同使用者中采用不同的管理规范,其相互之间既有共通之处,也有各企业的特点。
数据标准和数据规范的制定将是数字化社会的主要工程,也是国家建设别数据统一共享开放平台的基石。
派客动力数据治理
用户可利用有效的数据分类方法,依据自身业务特点对内部数据进行归类处理,不仅能够清晰地梳理数据资产,更合理地使用、维护和扩充数据,还可以在业务层面加深数据的辨识度,无论是对数据实现规范化管理,还是在业务架构层面对应用系统进行“通拆并砍”,都能够做到有迹可循,有理可依。数据分级是指采用规范、明确的方法区分数据的重要性和敏感度差异,并确定数据级别。数据分级有助于用户根据数据不同级别,确定数据的对外开放程度,以及在其生命周期的各个环节应采取的安全防护策略和管控措施,进而提高数据管理和安全防护水平,确保数据的完整性、保密性和可用性。
数据治理保障生产数据安全
商业保护的困境就是数据存在的形式过多,访问人数多,存储分散。在商业银行的内部有海量的数据信息,这些数据信息大部分被分散存储到全行办公人员的PC端、移动存储介质、邮箱等,由于日常对员工的要求和管理标注高低不一,人员安全意识不均衡,这也进一步增加了对数据信息安全保护的难度。派客动力脱敏平台中的权限管理首先将员工进行等级划分,不同等级的员工所获取到的权限不同,对于数据信息处理手段上也有了明确的差距。例如:只读权限,完全控制等。
版权所有©2024 天助网