数据治理过程
从范围来讲,数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,从到终端再回到形成一个闭环负反馈系统(控制理论中趋稳的系统)。从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合。
数据治理数据使用场景
场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,例如数据脱敏,同一数据域在不同场景下的脱敏规则等。
真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。
派客动力数据治理
派客动力敏感数据发现系统具备智能记忆功能,用户已经确认的敏感字段无需重复确认。系统按照用户的敏感数据或已进行预设的敏感数据特征去系统中筛查敏感数据,筛查出的结果会经人工干预进行确认,为了快速确认敏感数据,可利用系统中的批量设置功能,不再需要一个字段一个字段的查看,通过找到与该字段有关联的敏感数据进行批量确认即可。当表结构根据业务发生变化时,系统自动开启的智能记忆功能,将已确认好的敏感数据不再进行二次及多次发现。
数据治理数据脱敏
数据脱敏不仅仅是代名词,同样也蕴含着复杂且多样的脱敏技术能力。在不同环境下,企业对于敏感数据脱敏的要求也不尽相同。例如:脱敏后的数据要求性、可用性、完整性等。通常来说,市面上多数的脱敏产品中可通过内置的规则对、姓名、等常用的敏感数据实现脱敏,并满足后续的测试、使用等需求,而更多真实环境中,往往需要脱敏的
敏感数据实际在脱敏操作中更为复杂化。
版权所有©2025 天助网