应对型数据治理缺点
批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不的主数据。因此,这会降低多领域 MDM 方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。
数据治理主动型治理
主动数据治理的个优势是可在根源获得主数据。具有严格的“搜索后再创建”功能和强大的业务规则,确保关键字段填充经过批准的值列表或依据第三方数据验证过,新记录的初始质量级别将非常高。
主数据管理工作通常着重于数据质量的“使它干净”或“保持它干净”方面。
如果 MDM 系统中的数据质量初始级别非常高,并且如果您不会通过从 CRM 或 ERP 源系统中传入不、不完整或不一致的数据来连续污染系统,则主数据管理的“保持它干净”方面非常容易。
主动数据治理还可有效消除新主记录的初始录入和其认证以及通过中间件发布到企业其余领域之间的所有时间延迟。由用户友好的前端支持的主动数据治理可将数据直接录入到多领域 MDM 系统中,可应用所有典型的业务规则,以整理、匹配和合并数据。当初始数据录入经过整理、匹配和合并流程后,此方法还允许数据管理员通过企业总线将更新发布到组织的其它领域。
数据治理数据分级
,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。如何给数据定级,一个重要的依据就是要判断该数据泄露时所造成的影响,包括影响的对象、影响的范围和结果等,这些取决于业务分类的准确性。数据分级另一个前提就是合规的梳理,企业可以通过这项工作清楚地了解哪类数据是被要求必须受保护的,从而结合分类的结果更地对数据进行分级。
派客动力数据治理
派客动力敏感数据发现系统具备智能记忆功能,用户已经确认的敏感字段无需重复确认。系统按照用户的敏感数据或已进行预设的敏感数据特征去系统中筛查敏感数据,筛查出的结果会经人工干预进行确认,为了快速确认敏感数据,可利用系统中的批量设置功能,不再需要一个字段一个字段的查看,通过找到与该字段有关联的敏感数据进行批量确认即可。当表结构根据业务发生变化时,系统自动开启的智能记忆功能,将已确认好的敏感数据不再进行二次及多次发现。
版权所有©2024 天助网