数据治理怎么做
当真正理清了这些关于信息化现状认知,企业通常都会决定开展数据治理和数据安全治理工作。至于这两项工作怎么做,通常有两种思路:要么循序渐进地从数据资产化的角度做治理,要么以需求为导向,从数仓、中台等数据服务的角度做。这就好比一条河被污染了,老百姓要喝水,是从治理水质,还是在下游建个污水处理厂,每天喝多少就治理多少?中国足球要进世界杯,是从娃娃抓起搞青训,还是规划老外雇佣军?选择哪种思路,高层认知很关键,所以IT、数据、业务、安全、法务等各部门提供的信息一定要准确,但实际情况要糟的多(因为基层员工的认知不够和人员变动等不确定因素都会造成高层的信息缺失)。
数据治理数字化转型
谈谈数字化转型,各位可根据现状对号入座。目前大的背景是业务拉动数据的中级阶段,但未来的方向一定是数据拓展业务。数字化转型道远,没有谁敢说自己完成了数字化转型,因为业务在变、数据在变、组织在变、流程在变、法律法规在变,一切都在变。在这条路上应该以终为始,走一步看三步,因为极有可能当你走到第三步的时候却发现步走错了。
数据治理数据使用场景
场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,例如数据脱敏,同一数据域在不同场景下的脱敏规则等。
真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。
数据治理多种异构数据源支持
具有多种异构数据源支持,一个脱敏规则可应用于不同的数据源,可对结构化数据、半结构化数据以及非结构化数据进行脱敏处理。例如:可在excel、TXT、Oracle、Hadoop等数据源上直接引用。脱敏后的数据完全不落地分发,提供库到库、文件到库、库到文件、文件到文件等方式,无需在生产系统或本地安装任何客户端。
版权所有©2024 天助网