普通旺铺
***安全治理平台询问报价「在线咨询」
来源:2592作者:2022/8/30 3:06:00
企业视频展播,请点击播放
视频作者:北京派客动力科技有限公司






应对型数据治理缺点

批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不的主数据。因此,这会降低多领域 MDM 方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。





数据治理主动型治理

主动数据治理的个优势是可在根源获得主数据。具有严格的“搜索后再创建”功能和强大的业务规则,确保关键字段填充经过批准的值列表或依据第三方数据验证过,新记录的初始质量级别将非常高。

主数据管理工作通常着重于数据质量的“使它干净”或“保持它干净”方面。

如果 MDM 系统中的数据质量初始级别非常高,并且如果您不会通过从 CRM 或 ERP 源系统中传入不、不完整或不一致的数据来连续污染系统,则主数据管理的“保持它干净”方面非常容易。

主动数据治理还可有效消除新主记录的初始录入和其认证以及通过中间件发布到企业其余领域之间的所有时间延迟。由用户友好的前端支持的主动数据治理可将数据直接录入到多领域 MDM 系统中,可应用所有典型的业务规则,以整理、匹配和合并数据。当初始数据录入经过整理、匹配和合并流程后,此方法还允许数据管理员通过企业总线将更新发布到组织的其它领域。





数据治理主动数据治理

主动数据治理方法消除了“数据治理官僚化”这一认识,因为主数据的授权已推给上游的业务用户,使数据管理员处于很少被打扰的角色,他们将不会成为诸如订单管理或出具等关键业务流程的瓶颈。

销售和营销均受益,因为可更迅速且经济有效地完成营销活动,在启动活动之前无需前期数据纠正。财务上也受益,因为将一次性捕获新客户需要的所有数据元素,添加新客户的流程包括提取第三方内容并计算限额,然后将该信息传回 ERP 系统。




数据治理管理规范

数据化建设过程中的管理规范,更多体现在数据融合和交换的管理方法中,该类方法是以应用软件为载体的数据管理类规范,通常在不同应用行业、不同使用者中采用不同的管理规范,其相互之间既有共通之处,也有各企业的特点。

数据标准和数据规范的制定将是数字化社会的主要工程,也是国家建设别数据统一共享开放平台的基石。




辛敏珺 (业务联系人)

13804989122

商户名称:北京派客动力科技有限公司

版权所有©2024 天助网