数据治理主动数据治理
主动数据治理方法消除了“数据治理官僚化”这一认识,因为主数据的授权已推给上游的业务用户,使数据管理员处于很少被打扰的角色,他们将不会成为诸如订单管理或出具等关键业务流程的瓶颈。
销售和营销均受益,因为可更迅速且经济有效地完成营销活动,在启动活动之前无需前期数据纠正。财务上也受益,因为将一次性捕获新客户需要的所有数据元素,添加新客户的流程包括提取第三方内容并计算限额,然后将该信息传回 ERP 系统。
数据治理数据性要求
作为数据应用的内容本身,将会有更多的性要求,因此,数据整个生命周期的安全将是企业在数字化融合下的重要考量内容,数据在采集、传输、处理、交换、销毁全生命中,应该采用哪些技术手段,保障数据不被获取,数据如何管理才能平衡业务发展和安全管控之间矛盾。于此相关的数据技术、数据库审计技术、数据交换技术、网络监控技术等的,该类技术在数字化建设浪潮中将迎来快速发展的机遇。
· 可以独立部署,也可以与大数据平台、数据隐私保护平台集成
数据治理数据安全保护策略
随着各行各业加速数字化转型风口下,数据安全厂商所提供的性的数据隐私保护产品和技术、方案等也各不相同。而数据脱敏技术和产品已然成为数据安全保护的常规防护手段之一。在开发、测试以及数据外发共享等环境下被广泛应用。但仅仅能够对敏感数据进行一系列的变形、遮蔽、加密等手段处理是远远不够的,想要真正意义上实现客户安全、便捷的使用数据,还要有完善的架构体系以及的技术做支撑。否则将会在实施过程中给客户带来一系列的问题与麻烦。
版权所有©2024 天助网