数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
数据治理步骤
共享数据准备阶段
共享数据提供方根据共享业务需求完成共享数据归集、数据分类分级,并对共享数据进行持续性的维护,保证共享数据的准确、完整、可用和真实。
共享数据交换阶段
需对交换服务的资源方和使用方之间提供审核及授权等权限,共享数据交换服务方采用身份鉴别、访问控制、安全传输、过程追溯等技术手段,保证信息共享交换过程中交换实体可信、数据传输安全、交换行为记录可追查。
数据治理数据脱敏
派客动力脱敏系统采用的静态脱敏方式,可以从元数据、数据的角度在海量业务系统的数据中快速发现敏感数据,并定位敏感数据的存储与分布,统计敏感数据量级。并且支持用户自定义发现规则、通过设置敏感字段对企业系统中的表和列进行扫描定位,利用专门的脱敏算法对敏感数据进行变形、屏蔽、替换、随机化等处理,将敏感数据转化为虚构数据,隐藏了真正的隐私信息,为数据的安全使用提供了基础保障。同时脱敏后的数据可以保留原有的数据特征与分布,无需改变相应的业务逻辑,实现了企业低成本、、安全的使用生产的隐私数据。
版权所有©2024 天助网