数据治理让数据更安全
这是一个很现实也很棘手的问题。大家都知道数据安全的重要性,都要做数据安全,也知道数据安全的几种思路方法,然而真正要做的时候,却发现根本无从下手,只能参考其它同类企业,人家采购了什么,自己就采购什么,或者监管机构要求做什么,就采购什么。至于数据安全软件买来怎么用,或者究竟能派上多大用场,没人能说得清。其实,造成这种局面的本质原因就是企业对自身的数据缺乏认知,解决了数据认知问题,数据安全的落地便是水到渠成的了。所以,与其谈论该如何做数据安全,不如谈谈该如何提升数据认知能力。
数据治理数据使用场景
场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,例如数据脱敏,同一数据域在不同场景下的脱敏规则等。
真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。
数据治理多种异构数据源支持
具有多种异构数据源支持,一个脱敏规则可应用于不同的数据源,可对结构化数据、半结构化数据以及非结构化数据进行脱敏处理。例如:可在excel、TXT、Oracle、Hadoop等数据源上直接引用。脱敏后的数据完全不落地分发,提供库到库、文件到库、库到文件、文件到文件等方式,无需在生产系统或本地安装任何客户端。
版权所有©2024 天助网