数据治理包含
这里包括对业务、数据、应用、组织架构、法律法规等方方面面的认知。举个例子:你的业务战略目标是什么,业务域、业务线、业务项能不能说清楚;你有多少结构化数据、半结构化数据、非结构化数据,数据体量有多大,都存哪,使用场景、使用角色都是什么,数据和业务之间的关系是什么;你建设了多少应用系统,应用和业务之间的关系是什么;你的组织架构长什么样,流程什么样,不同部门之间的关系是什么,权责利如何划分,信息化成熟度什么样,人员技能又如何;你的企业要遵守哪些法律法规,有没有跨境业务,行业有没有监管要求?
数据治理成为未来发展主流
面对新经济发展模式,新的机遇和挑战,很显然引导和参与下,社会将投入更多的资源,形成新一轮的数字化建设的浪潮。那么,数据化建设的方向、数据化建设的内容,在此期间将会有哪些特点,本文从多方面给予论述,为企业发展提供简明的思路。
作为未来的发展前沿,离不开数字化基础。数字化浪潮虽然可以促进企业的快速发展,推动信息的流动,但是离不开企业信息化发展的规律。企业仍会从业务系统开始,逐步构筑数据融合的信息平台再构筑跨管辖权的数据交换平台。这个发展规律,决定了企业未来的数字项目内容,这些内容将是未来的发展主流。
数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
派客动力数据治理方面实力
确保业务对象完整性:基于完整的业务对象进行脱敏操作,确保不破坏数据的二义性以及业务关联性。内置多种脱敏算法:系统内包含函数、初级、算法模式,用户可根据实际业务场景需求,对敏感数据通过自定义算法生成规则从而使敏感数据转换为虚构数据。同时支持抽取式、本库脱敏:系统支持抽取式脱敏和本库脱敏两种方式,是业内一款同时支持抽取式不落地脱敏以及就地脱敏两种模式的脱敏系统。任务监控:用户可通过监控监测所有计划开展的任务进度、包括测试数据抽取、子集抽取和发现、脱敏任务等。
版权所有©2024 天助网