数据治理主动数据治理
主动数据治理方法消除了“数据治理官僚化”这一认识,因为主数据的授权已推给上游的业务用户,使数据管理员处于很少被打扰的角色,他们将不会成为诸如订单管理或出具等关键业务流程的瓶颈。
销售和营销均受益,因为可更迅速且经济有效地完成营销活动,在启动活动之前无需前期数据纠正。财务上也受益,因为将一次性捕获新客户需要的所有数据元素,添加新客户的流程包括提取第三方内容并计算限额,然后将该信息传回 ERP 系统。
数据治理数据使用角色
这属于数据安全管理的范畴。保障数据安全,不仅需要技术手段,还需要常态化的管理机制做支撑。其中的就是要梳理数据使用的角色、流程以及场景。数据使用角色通常包括数据管理者、数据所有者、数据生产者、数据使用者等,是数据访问或使用权限,以及数据泄露以后的问责主体;数据使用流程是否健全,是企业数据安全管理成熟度的体现。
数据治理数据安全现状
随着大数据的发展性、集中性和开放性的不断提高,数据安全的薄弱性开始凸显。国内外的数据泄露事件频频发生,用户的个人隐私和企业的数据安全受到极大的威胁和挑战。在数字化驱动的环境下,数据泄露已不再是单一式的外部攻击,逐渐转为内部人员对信息化系统的敏感信息进行倒卖或,数据安全防护岌岌可危,也是影响大数据发展的问题。
数据治理数据脱敏后数据依然具备业务规则关联性
派客动力脱敏平台根据该银行需求,保障脱敏后的数据依然具备供企业使用、分析的能力,具备能让业务可靠运行的能力。因此,脱敏后的数据能够保有原始数据的业务属性和数据分布特征,例如:原始数据中的姓名、地址等信息,需要在脱敏后依然具有可读性,脱敏后的数据满足业务系统的数据规则,能够正确的通过业务系统的数据有效性验证,如号、号的校验位,生日的区间等。
版权所有©2024 天助网