数据治理主动数据治理
主动数据治理方法消除了“数据治理官僚化”这一认识,因为主数据的授权已推给上游的业务用户,使数据管理员处于很少被打扰的角色,他们将不会成为诸如订单管理或出具等关键业务流程的瓶颈。
销售和营销均受益,因为可更迅速且经济有效地完成营销活动,在启动活动之前无需前期数据纠正。财务上也受益,因为将一次性捕获新客户需要的所有数据元素,添加新客户的流程包括提取第三方内容并计算限额,然后将该信息传回 ERP 系统。
数据治理数据脱敏
派客动力脱敏系统采用的静态脱敏方式,可以从元数据、数据的角度在海量业务系统的数据中快速发现敏感数据,并定位敏感数据的存储与分布,统计敏感数据量级。并且支持用户自定义发现规则、通过设置敏感字段对企业系统中的表和列进行扫描定位,利用专门的脱敏算法对敏感数据进行变形、屏蔽、替换、随机化等处理,将敏感数据转化为虚构数据,隐藏了真正的隐私信息,为数据的安全使用提供了基础保障。同时脱敏后的数据可以保留原有的数据特征与分布,无需改变相应的业务逻辑,实现了企业低成本、、安全的使用生产的隐私数据。
数据治理敏感数据分布
随着信息化时代的不断推进,企业数据不仅在数量上呈现式递增的趋势,同时数据还具有类别多样化、环境复杂化等特点。由于企业数据大多分散存放于企业内部的业务系统和数据仓库中,所以管理者对于敏感数据数据分布情况难以进行把控,给敏感数据、数据的规范化管理造成很大难度。难度。现在市面上有很多识别敏感数据的工具和技术,能够对结构化的敏感数据进行识别并发现,而半结构化数据和非结构化数据识别起来较为困难,程度较低。
版权所有©2024 天助网