数据治理怎么做
当真正理清了这些关于信息化现状认知,企业通常都会决定开展数据治理和数据安全治理工作。至于这两项工作怎么做,通常有两种思路:要么循序渐进地从数据资产化的角度做治理,要么以需求为导向,从数仓、中台等数据服务的角度做。这就好比一条河被污染了,老百姓要喝水,是从***治理水质,还是在下游建个污水处理厂,每天喝多少就治理多少?中国足球要进世界杯,是从娃娃抓起搞青训,还是规划老外雇佣军?选择哪种思路,高层认知很关键,所以IT、数据、业务、安全、法务等各部门提供的信息一定要准确,但实际情况要糟的多(因为基层员工的认知不够和人员变动等不确定因素都会造成高层的信息缺失)。
派客动力数据治理
用户可利用有效的数据分类方法,依据自身业务特点对内部数据进行归类处理,不仅能够清晰地梳理数据资产,更合理地使用、维护和扩充数据,还可以在业务层面加深数据的辨识度,无论是对数据实现规范化管理,还是在业务架构层面对应用系统进行“通拆并砍”,都能够做到有迹可循,有理可依。数据分级是指采用规范、明确的方法区分数据的重要性和敏感度差异,并确定数据级别。数据分级有助于用户根据数据不同级别,确定数据的对外开放程度,以及在其生命周期的各个环节应采取的安全防护策略和管控措施,进而提高数据管理和安全防护水平,确保数据的完整性、保密性和可用性。
数据治理数据脱敏后数据依然具备业务规则关联性
派客动力脱敏平台根据该银行需求,保障脱敏后的数据依然具备供企业使用、分析的能力,具备能让业务可靠运行的能力。因此,脱敏后的数据能够保有原始数据的业务属性和数据分布特征,例如:原始数据中的姓名、地址等信息,需要在脱敏后依然具有可读性,脱敏后的数据满足业务系统的数据规则,能够正确的通过业务系统的数据有效性验证,如号、号的校验位,生日的区间等。
版权所有©2024 天助网