人工智能控制器
与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对必须具体对象具体设计。它们对新数据或新信息具有很好的适应性。它们能解决常规方法不能解决的问题。它们具有很好的抗噪声干扰能力。它们的实现十分便宜,特别是使用小配置时。 它们很容易扩展和修改。
误差反向传播技术是多层前聩ANN常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的快下降法,输出结点的误差反馈回网络,用于权重调整,搜索优。
也有一些的文章论述运用模糊逻辑控制感应电机的磁通和力矩。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。该系统中模糊速度控制器与常规的PI速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。神经网络的应用 现如今,有大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。
人工智能技术控制器
误差反向传播技术性是双层前聩ANN常见的学技术。假如互联网有充足多的隐藏层和隐藏结点及其适合的激励函数,双层ANN只有完成必须的投射,沒有立即的技术性挑选佳隐藏层、结点数和激励函数,一般用尝试法处理这个问题,反向传播训炼优化算法是基本上的更快降低法,輸出结点的误差意见反馈回互联网,用以权重值调节,检索佳。
版权所有©2024 天助网