电源模块通电后快速烧毁的原因
通电后快速烧毁的原因:
(1)输入电压极性接反了
(2)输入电压远远高于标称电压
(3)输出端极性电容接反了
(4)输出电路易引起短路或者外接负载在上电瞬间存在大电流
解决方法:需要重新检查一遍电路进行相应优化或者调整电压。如:接线前注意检查或加防反接保护电路,选择合适的输入电压,上电前检查电容极性,确保正确,在电源模块输出端加短路保护。
期望大家在选购电源模块时多一份细心,少一份浮躁,不要错过细节疑问。想要了解更多电源模块的资讯,欢迎拨打图片上的热线电话!!!
多个电源模块并联应用的方法
工程师在设计电源系统时,当一个电源模块无法满足系统设计要求,通常会采用多个电源模块并联应用。电源并联运行是实现大容量、大功率电源系统的关键,不过若是并联太多模块,将会影响均流和可靠性,并联设计方案不当,严重的还会烧毁模块和后级电路。
目前常用的电源并联电路设计方案有电阻并联法、电流均流并联法和二极管并联法三种。电阻并联法是指在模块输出端外分别串接电阻再并联,原理是利用电阻的线性电压实现负载均衡,适用于输出功率不大、准确度要求不高的场合。
模块电源易于维护、设计灵活、应用广泛
在产品应用中,如果出现故障,只需替换另一个模块即可正常工作。在设计中途如果需要改变方案,也只需变化其中的模块,无需修改整体供电电路。
应用广泛
现已广泛应用在仪器仪表、汽车电子、轨道交通、数据通信、工业自动化、智能家居、航空航天、科研实验、船舶、冶金矿山、电力系统、电子、安防监控、新能源、石油化工、手持电子设备等众多领域。
在频域内测量辐射和传导电磁干扰,这就是对已知波形做傅里叶级数展开,本文中我们着重考虑辐射电磁干扰性能。在同步压转换器中,引起电磁干扰的主要开关波形是由Q1和Q2产生的,也就是每个场效应管在其各自导通周期内从漏极到源极的电流di/dt。图2所示的电流波形(Q和Q2on)不是很规则的梯形,但是我们的操作自由度也就更大,因为导体电流的过渡相对较慢,所以可以应用Henry Ott经典著作《电子系统中的噪声降低技术》中的公式1。传导干扰是由于电路中寄生参数的存在,以及开关电源中开关器件的开通与判断,使得开关电源在交流输入端产生较大的共模干扰和差模干扰。我们发现,对于一个类似的波形,其上升和下降时间会直接影响谐波振幅或傅里叶系数(In)。
版权所有©2024 天助网