数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。当前,在研究、教学和开发领域,数据可视化乃是一个极为活跃而又关键的方面。“数据可视化”这条术语实现了成熟的科学可视化领域与较年轻的信息可视化领域的统一。数据可视化与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。
中心价值:多维分析的智能大数据可视化平台, 不仅仅只是呈现出数据,更能智能 分析,提供决策依据。
数据资源整合分析:构建数据分析模型库,实现数据发掘的模 型化分析;建立数据探索分析能力,发现 数据背后的隐藏规律。
进行数据可视:呈现打造数据全景可视化平台,形式表现; 数据及时更新,实时分类呈现。
BI数据可视化:丰富的数据可视化探索,3D立体化呈现, 提供定制式数据可视化解决方案。
把数据转化成有效的可视化形式(任何种类的图表)是让数据发挥作用的。图表是可视化的中心。要达到合适的数据用合适的图表展示,我们需要掌握图表的特性,可视化图表按其特性可分为分布类、流程类、占比类、区间类、关联类、趋势类、时间类和地图类,可视化图表众多,常用的包括柱图、线图、条图、地图、雷达图、矩形树图、气泡图、饼图、环图、仪表盘等。
常见的数据质量问题包括:1.数据收集错误,遗漏了数据对象,或者包含了本不应包含的其他数据对象。2.数据中的离群点,即不同于数据集中其他大部分数据对象特征的数据对象。3.存在遗漏值,数据对象的一个或多个属性值缺失,导致数据收集不全。4.数据不一致,收集到的数据明显不合常理,或者多个属性值之间互相矛盾。例如,体重是负数,或者所填的邮政编码和城市之间并没有对应关系。5.重复值的存在,数据集中包含完全重复或几乎重复的数据。正是因为有以上问题的存在,直接拿采集的数据进行分析or可视化,得出的结论往往会误导用户做出错误的决策。因此,对采集到的原始数据进行数据清洗和规范化,是数据可视化流程中不可缺少的一环。
版权所有©2025 天助网