车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。1981年后在美国制造的每辆轿车、卡车或拖车都带有VIN,并且此号码是固定的。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。
选择匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。这些编号就像汽车的指纹,它不仅有助于记录问题和所有人变更的记录,还可以防盗。实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、等等;
可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果。
车牌识别算法是车牌识别系统的基础,对图像进行采ji,然后从车牌纹理出发,应用分开理论建立基于有向分形参数的车牌定位预处理模型,结合投影法提取车牌区域,再将字符进行分割和识别,后输出结果。车牌定位的方法多种多样,归纳起来主要有利用梯度信息投影统计;利用小波变换作分割;车牌区域扫描连线算法;利用区域特性训练分类器的方法等。当货车进入地磅后,由于车辆已经在系统有了毛重(与车牌号对应),通过车牌识别一体机,自动识别货车车牌号码,系统会自动调出该车辆毛重,可以计算货物重量,免去很多人工麻烦,也避免了企业由于车辆毛重不准确导致的货物资产流失现象。
版权所有©2025 天助网