激光雷达技术可以提供给公路设计以及铁路设计精度极高的基于地面的高程模型,从而方便对这些工程线路的设计与施工进行更加准确的计算。在设计电力线路的时候,运用激光雷达得到的各种成果数据,能够整体了解与掌握电力线路需要设立的一些公共区域,及其区域内地形与地物的实际情况。在一些树木密集的地区,通过激光雷达技术可以方便估算出所需要开采树木的大概面积与木材量。运用激光雷达技术还可以为电力线抢修与维护提供很大的方便,依照在电力线路上的那些激光雷达数据点,及与之对应的一些(地面)高程,能够较好地测量计算出每一个线路与地面之间的高度,从而便于工人抢修与维护电力线。
激光雷达由发射系统、接收系统 、信息处理三部分组成。激光雷达的工作原理是利用可见和近红外光波发射、反射和接收来探测物体。根据结构,激光雷达分为机械式激光雷达、固态激光雷达和混合固态激光雷达。
机械激光雷达,是指其发射系统和接收系统存在宏观意义上的转动,也就是通过不断旋转发射头,将速度更快、发射更准的激光从“线”变成“面”,并在竖直方向上排布多束激光,形成多个面,达到动态扫描并动态接收信息的目的。因为带有机械旋转机构,所以机械激光雷达外表上的特点就是自己会转,个头较大。
固态雷达的一大优势是它能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦。不过,这种方式也有自己的缺陷,比如探测距离较近。这意味着固态激光雷达没有“远shi眼”,在实际使用中不适合远程探测,而业内***坚信,全自动驾驶汽车上搭载的激光雷达至少一眼就得看到200到300米外的物体。固态激光雷达属于非扫描式雷达,发射面阵光,是以2维或3维图像为重点输出内容的激光雷达。某种意义上,它有些类似于黑夜中的照相机,光源由自己主动发出。
单线激光雷达在辅助驾驶里的应用是行人探测,实际上这也是一个前向防碰撞的应用,与汽车防碰撞基本类似。由于单线激光雷达的角分辨率可以做到比多线激光雷达高,可在更远的距离提前发现行人,为控制系统或驾驶员留出更多的预警时间。ACC的应用。这个功能在目前中国城市交通拥堵的情况下特别适用,它是通过前向激光雷达直接探测到前面的汽车运动来获得前车的准确距离信息,然后通过控制汽车自动进行跟随。