智能AUV在对导航信息处理中引入人工智能技术实现智能导航的步
近代脑科学研究的进步促进了人工智能理论和技术的快速发展,也使以类脑的方式实现对人或动物认知导航机制的模拟成为可能,从而加快了在无人化平台发展中引入人工智能技术实现智能导航的步伐。智能AUV在对导航信息处理中引入了人工智能理论和技术,如认知科学等。例如,以认知导航具有的学习记忆、知识推理以及行为规划等智能导航信息处理能力为技术支撑,可以实现无人平台在自主选择的航迹上持续性自由行进,达到全自动化运行控制的目的。
从海洋声学建模方向出发,建立较好表征环境不确实性的声学模型
从海洋声学建模方向出发,建立较好表征环境不确实性的声学模型。通过研究海洋学与水声学的随机建模、水声学与海洋学模型耦合等问题,分析水声信道不变特征和不确定性的表征和评估,利用海洋环境不确定性建模和声传播模型的输出,通过统计分析和概率描述等手段,建立能够较好表征环境不确实性的声学模型,以期减少模型失配对探测性能的影响[17]。如针对主动声呐探测中所遇到的信道畸变,给出了2种信道模型(快速衰减模型、时间扩散模型)及其探测性能的比较;提出了适用于不同条件的 3种模型(参数确知模型、环境变量随机模型、环境变量和源位置随机模型)及其探测方法,在低信噪比失配情况下取得了较好的探测性能。
多基地主动目标探测技术
多基地主动目标探测技术。分布式探测系统工作在主动模式下即是多基地。多基地概念来自雷达领域,引入到水声领域已有数十年时间,但在应用上很难与雷达领域相比,究其原因主要是水声传播速度慢、时延不可忽略、信道时空起伏严重,基于概率统计与忽略时延的多基达探测与估计理论很难适用。因此,相关研究主要集中在利用简单声学模型(主要基于声呐方程)、结合经典统计理论与数据关联融合方法优化系统配置、探测与定位性能方面,其中探测方法与基于目标级关联融合的被动探测方法类似,未考虑主动观测周期、传播时延等的影响,其性能还是依赖于单基地探测能力,很难利用多基地特性获取额外增益。
版权所有©2024 天助网