在夏季安装光伏的理由有哪些这方面,湖北昕洁新能源科技有限公司所知道或了解的相关情况进行分析,让您除了了解湖北昕洁新能源科技有限公司之外,能对该行业有更多的认识!
“十三五”时期,我国太阳能发电产业规模有望得到大幅提升。根据国家能源局提供的规模发展指标,到2020年底,太阳能发电装机容量有望达到1.6亿千瓦,年发电量达到1700亿千瓦时。
在1.6亿千瓦装机容量中,光伏发电总装机容量达到1.5亿千瓦,太阳能热发电总装机容量达到1000万千瓦。太阳能热利用集热面积保有量达到8亿平方米。
国家和地方给予的各项优惠措施,使得光伏发电越来越为广大居民特别是农民所认可,安装和申请并网的分布式光伏发电项目户数呈不断增长。仅去年一年,供电公司受理要求并网的居民分布式光伏发电项目户数达920户,装机容量4308千瓦。
据供电公司负责人介绍,正常的农户屋顶,可安装约24块电板,一年可实现每户平均发电7200度。积极探索符合农户需求的“三种模式”:一是全额购买模式,平均每户每年收益可达投资额的12%-20%,5到7年收回投资;而光伏发电正好与之相切合,对以光伏扶贫为***扶贫举措的地方,贫困户不仅可以可以每天卖电赚钱,天天有收益,还可以获取国家的20年补贴。二是“光伏贷”模式,支付较少的首付即能马上享受光伏电站的收益;三是租赁模式,农户可将屋顶租赁给光伏企业,企业与居民共享售电收益。
国家能源局新能源和可再生能源司副司长梁志鹏介绍,“十三五”时期,我国将持续完善太阳能光伏发电市场体系,快速扩大光伏发电规模化利用规模和水平。因地制宜地促进光伏多元化应用;结合电力体制改革,***推进中东部地区分布式光伏发电;同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。结合送出通道,推进大型光伏基地建设;综合土地和电力市场应用条件,积极打造光伏发电综合利用、电价改革等***基地。
1839 年,19 岁的法国贝克勒尔做物理实验时,发现在导电液中的两种金属电极用光照射时电流会加强,从而发现了“光生伏打效应”。1930 年,郞格提出用“光伏效应”制造太阳能电池,使太阳能变成电能。
1932 年奥杜博特和斯托拉制成太阳能电池。
1941 年奥杜在硅上发现光伏效应。
1954 年5 月美国贝尔实验室恰宾、富勒和皮尔松开发出效率为6%的单晶硅太阳能电池,这是 世界上有实用价值的太阳能电池,同年威克发现了光伏效应,并在玻璃上沉积硫化镍博膜,制成了太阳能电池,太阳光转化为电能的实用光伏发电技术由此诞生并发展起来。并网储能光伏发电系统,能够存储能多余的发电量,提高自发自用比例,适用于光伏自发自用不能余量上网、自用电价比上网电价价格贵、光伏发电和用电不在同一时段等应用场所。
光伏组件作为光伏发电系统中的***组成部分,质量问题影响着电站系统效率,其中,热斑效应和PID效应对光伏组件功率的影响尤其突出,不容忽视。今天小编介绍影响光伏组件功率好坏的两大效应详解;
1、热斑效应
热斑效应是指在一定条件下,串联支路中被遮蔽的光伏组件将当做负载,消耗其他被光照的电池组件所产生的能量,被遮挡的光伏电池组件此时将会发热的现象;被遮挡的光伏组件、将会消耗有光照的光伏组件所产生的部分能量或所有能量,降低输出功率;太阳能电池主要分为晶体硅电池和薄膜电池两类,前者包括单晶硅电池、多晶硅电池两种,后者主要包括非晶体硅太阳能电池、铜铟硒太阳能电池。严重将会光伏组件、甚至烧毁组件。
2、热斑效应产生原因
造成热斑效应的根源是有个别坏电池的混入、电极焊片虚焊、电池由裂纹演变为破碎、个别电池特性变坏、电池局部受到阴影遮挡等;由于局部阴影的存在,光伏组件中某些电池单片的电流、电压发生了变化。其结果使电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升;当太阳光照射到P-N结后,空穴由P极区往N极区移动,电子由N极区向P极区移动,形成电流。
3、防护措施要求
在光伏电池组件的正负极间并联一个旁路二极管,以增加方阵的可靠性。通常情况下,旁路二极管处于反偏压,不影响组件正常工作。其原理是当一个电池被遮挡时,其他电池促其反偏成为大电阻,此时二极管导通,总电池中超过被遮电池光生电流的部分被二极管分流,从而避免被遮电池过热损坏。光伏发电的工作特性1、电能储存单元:太阳能电池产生的直流电***入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。以避免光照组件所产生的能量被受遮蔽的组件所消耗。
2、PID效应
电位诱发衰减效应是电池组件长期在高电压作用下,使玻璃、封装材料之间存在漏电流,大量电荷在电池片表面,使得电池表面的钝化效果恶化,导致组件性能低于设计标准。PID现象严重时,会引起一块光伏组件功率衰减50%以上,从而影响整个组串的功率输出。高温、高湿、高盐碱的沿海地区***易发生PID现象。7(《***新***上网电价》部分地区价格会有波动)自发自用,余电上网价格分为两个部分自发自用电价=当地基础电价+0。
3、产生的原因
一是系统设计原因,光伏电站的防雷接地是通过将方阵边缘的组件边框接地实现的,这就造成在单个组件和边框之间形成偏压,组件所处偏压越高则发生PID现象越严重。对于P型晶硅组件,通过有变压器的逆变器负极接地,消除组件边框相对于电池片的正向偏压会有效的预防PID现象的发生,但逆变器负极接地会增加相应的系统建设成本;侧立面安装主要是指在建筑物南墙、西墙、东墙上安装光伏组件地方式,对于高层建筑来说墙体是与太阳光接触面积大地外表面,光伏幕墙是使用较为普遍地一种应用方式。二是光伏组件原因,高温、高湿的外界环境使得电池片和接地边框之间形成漏电流,封装材料、背板、玻璃和边框之间形成了漏电流通道。通过使用改变绝缘胶膜乙烯酯(EVA)是实现组件抗PID的方式之一,在使用不同EVA封装胶膜条件下,组件的抗PID性能会存在差异。另外,光伏组件中的玻璃主要为钙钠玻璃,玻璃对光伏组件的PID现象的影响至今尚不明确;三是电池片原因,电池片方块电阻的均匀性、减反射层的厚度和折射率等对PID性能都有着不同的影响。
4、有效抑制PID效应的措施
首先是从组件侧考虑,采用非Na、Ca玻璃提高玻璃的体电阻,阻断漏电流通路的形成;储能电池的电量可以在晚上光伏电站不发电的时候释放,以达到自发多用的效果。或者采用非乙烯—共聚物的封装材料;其次是从逆变器侧考虑,采用组件负极接地的方式,防止负偏压造成的漏电流形成,处置方案简便、成本低、***,但负极直接接地会造成安全隐患,威胁电站的正常运行和运维安全。逆变器负极接地后,若发生组件正极接地故障则会造成电池板短路,而运维人员如若接触到正极则会发生危险,所以负极接地电路必须具有异常电流监测及分断保护系统,方可在抑制PID效应的同时保障电站设备的运行安全。
版权所有©2024 天助网