管壳式换热器由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:
①固定管板式换热器管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高时,可在壳体上安装有弹性的补偿圈,以减小热应力。
②浮头式换热器管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。
③ U型管式换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。
④涡流热膜换热器涡流热膜换热器采用新的涡流热膜传热技术,通过改变流体运动状态来增加传热效果,当介质经过涡流管表面时,强力冲刷管子表面,从而提高换热。高可达10000W/m2℃。同时这种结构实现了耐腐蚀、耐高温、耐高压、防结垢功能。其它类型的换热器的流体通道为固定方向流形式,在换热管表面形成绕流,对流换热系数降低。
设计管壳式换热器的基本原则
(1)流体流径的选择。指的是在管程和壳程各走哪一种流体,我们以固定管板式换热器为例说明:不洁净和易结垢的流体宜走管程;腐蚀性的流体宜走管程,以免管子和壳体同时被腐蚀;易污染的流体宜走管程,以减少泄漏量;压力高的流体宜走管程,以免壳体受压;饱和蒸汽宜走壳程,以便于及时排掉冷凝液;流量小或粘度大的流体宜走壳程,以使传热系数升高;被冷却的流体宜走壳程;若两流体温差较大,宜使对流传热系数大的流体走壳程,以减小温差应力。
(2)流体流速的选择。大一点的流速对传热系数是有帮助的,能使总传热系数变大,但同时使流动阻力变大,动力消耗增多,所以,我们需要综合考虑流体流速。
(3)管子的规格和管间距。目前试行的管壳式换热器系列只采用25×2.5mm及19×2.0mm两种管径规格的换热管,对于易结垢或不洁净的流体,可选择大管径,对于洁净的流体,可选择小管径;管间距小,对传热系数升高有帮助。
常见的换热器失效形式
敏感部位之一:换热器管板和换热管的连接处。在换热器管板和换热管的连接处会出现几何形状的突变,加上外因等因素比如:管板与换热管的连接不当、焊后处理不及时合理、两者之间存在的温差应力、板管和换热管所选择材料之间存在的差异性等,都会成为管板和管口连接处存在残余应力、焊接部位出现隐形缺陷(焊接部位出现气孔、及其他杂质)的原因。一旦受到壳程流体腐蚀性影响和诱导振动,都会使换热管和管板的连接处出现振动疲劳破坏、连接缝隙腐蚀、应力腐蚀开裂等现象。这些问题交错连接,共同作用会对连接处进一步的损坏,加快了连接处的损害速度,降低了连接处的使用寿命。
敏感部位之二:折流板和换热管配合使用处的损坏。
由于使用功能的需要,为了使换热管的热膨胀量能够被充分的吸收和使用,以及加工制造的方便,通常会在换热管和折流板的配合使用处留下一定程度的空隙。由于壳流体长时间额冲击,配合处的缝隙会不断的增大,使折流板不断的切割
换热管,在折流板的切割作用下设备不但会产生强大的振动噪音,还会引起换热管的泄漏实效。同时配合处缝隙不断的增大促使壳程流体内部的流动过程变进一步的复杂化,对换热器的传热效率造成了重大的影响。
敏感部位之三:换热器壳体、管板连接处损坏。
在换热器的使用过程中,其壳体和管板都会受到较大的压力荷载和温差应力的长期作用。这将直接导致换热器壳体、管板连接处局部应力的形成
版权所有©2024 天助网