润滑油冷却装置的结构形式有风冷式和水冷式两种。0)风冷式润滑油冷却装直
风冷式润滑油冷却装置的实物外形如图6-35所示。它主要由铜管和散热片组成。风冷式润滑油冷却装置安装在水散热器后面,润滑油的冷却靠风扇鼓风将热量带走。移动式柴油机主要是利用行驶中的风力对润滑油进行冷却。
(2)水冷式润滑油冷却装直
水冷式润滑油冷却装置的实物外形及零件分解如图6-36和图6-37所示。它主要由芯子和壳体组成。芯子由黄铜管、散热片和隔片组成。润滑油在芯子与壳体的夹层之间流动。冷却液在芯子内部流动时,带走润滑油的部分热量。经过冷却液的循环往复流动,使油温控制在80·C±5·C范围内。
图6-36 水冷式润滑油冷却器
图6-37 润滑油冷却器零件分解实物图(芯子、边盖、壳体)
2.润滑油冷却装置易产生的故障及原因
(1)风冷式润滑油散热器易产生的故障及原因
风冷式润滑油散热器的铜管易产生脱焊现象,上、下水室的焊接部位易产生裂纹和虚焊现象等。铜管产生脱焊现象,一般是由于柴油机振动过大所致。上、下水室出现漏水现象,一般是由于密封垫损坏或螺钉锈蚀损坏所造成。
(2)水冷式润滑油冷却器易产生的故障及原因
水冷式润滑油冷却器的铜管易发生***现象,前、后边盖易产生裂纹,密封垫易发生漏油现象,铜管内部有时也会发生堵塞现象。铜管***及前、后边盖产生裂纹,一般是由于操作人员在冬季没有放掉润滑油冷却器内部的冷却液所造成。
3.看图判断水冷式润滑油冷却器的故障
首先打开润滑油冷却器放水间,如图6-38所示。若发现放出的冷却液中有润滑油或白色浑浊物时,然后再从润滑油冷却器上打开放油阀,如图6-39所示。若放出的润滑油是白色浑浊物时,可断定润滑油冷却器内部芯子或密封垫片损坏。
象等。铜管产生脱焊现象,一般是由于柴油机振动过大所致。上、下水室出现漏水现象,一般是由于密封垫损坏或螺钉锈蚀损坏所造成。
图6-38润滑油冷却器放水阀的位置
图6-39润滑油冷却器放油阀的位置
若操作人员不能及时发现这种故障,随着柴油机的继续运转,会使润滑油的润滑效果丧失,***后导致柴油机发生"烧瓦"等事故。
4.看图检修水冷式润滑油冷却器
①拆下润滑油冷却器,放掉冷却器内部的润滑油,再通过润滑油冷却器的出水口,向冷却器内部加满水。然后把进水口堵塞,另一边用高压气筒向冷却器内部打气,如图6-40所示。若在润滑油冷却器的润滑油进、出油口有水冒出,则说明冷却器内部芯子或边盖密封圈损坏,应更换。
发电机组发电一般有两种情况
1.局部放电:发电机组中的局部放电主要有绕组主绝缘内部放电。端部电晕放电和槽放电三种,这是因为在电场的作用下,绝缘系统中绝缘体局部区域的电场强度达到击穿场强。在部分区域发生放电,但只是局部发生,并没有贯穿整个绝缘。
定子绕组或接头断裂放电:定子绕组短线街头断裂而引起的电弧放电。为故障放电。这种放电具有很大的危害性。
发电机电腐蚀
电腐蚀是发生在发电机槽部钉子线表面和铁心部位的一种腐蚀,较轻时使电线棒防晕层及主绝缘表面形成粒状白点。严重时会破坏防晕层,主绝缘表面因蚕食而出现麻点,甚至造成线棒及电条烧损。
发电机产生电腐蚀的部分一般有两种:一种是发生在防晕层和定子槽之间,通常称为外腐蚀,另一种是发生在防晕层和主绝缘之间,通常称为内腐蚀。
发电机产生电腐蚀的原因主要有:
1,点子槽在下线前未喷低阻半导体
2.使用的电条不合格,草且为打紧
3.定子线棒的固定方式不规范
4.线棒的尺寸和平直度不标准,***公差不符合要求等。
由于上述原因,造成发电机槽部钉子线防晕层表面和定子槽壁之间失去电接触而发生容性放电。又由于其放电量大,在放电是产生电火花和高达几百至上千摄氏度的温度。同时,放电使空气电离产生的臭氧与空气中的氧气,水分产生化学作用,对线棒和铁心产生腐蚀,这种叫做电腐蚀。
柴油发电机组是一种把燃油的化学能转化为电能的机电一体化设备,在现代化程度日益提高的今天,特别是随着计算机网络以及通信事业的蓬勃发展,设备对于电力供应可靠性的要求也日益增强,因为ups电源存在供电时间短的问题。
这样就使得柴油发电机组有了广阔的发展空间,但是柴油发电机组在为人们提供便利的同时,也因为机组的噪声直接影响着人们的身体健康、工作和生活。随着人们对环境要求的逐渐提高,如何解决并克服上述问题就成为柴油发电机组应用和发展的关键,在这里我们着重介绍一下柴油发电机组噪声的发生及解决方法。
根据柴油发电机组的工作原理,其噪声的产生非常复杂,从产生的原因和部位上来分:
1.排气噪声;
2.机械噪声;
3.燃烧噪声;
4.冷却风扇和排风噪声;
5.进风噪声;
6.发电机噪声。
下边分别就这六部分作一说明:
1.排气噪声:
排气噪声是一种高温、高速的脉动性气流噪声,是发动机噪声中能量,成分***的部分。比进气噪声及机体辐射的机械噪声要高得多,是发动机总噪声中***的组成部分。它的基频是发动机的发火频率。排气噪声的主要成分有以下几种:周期性的排烟引起的低频脉动噪声、排烟管道内的气柱共振噪声、汽缸的亥姆霍兹共振噪声、高速气流通过气门间隙及曲折的管道时所产生的噪声、涡流噪声以及排烟系统在管道内压力波激励下所产生的再生噪声等,随气流速度增加,噪声频率显著提高。
2.机械噪声:
机械噪声主要是发动机各运动部件在运转过程中受气体压力和运动惯性力的周期变化所引起的震动或相互冲击而产生的,其中***为严重的有以下几种:活塞曲柄连杆机构的噪声、配气机构的噪声、传动齿轮的噪声、不平衡惯性力引起的机械震动及噪声。柴油发电机组强烈的机械震动可通过地基远距离传播到室外各处,然后再通过地面的辐射形成噪声。这种结构噪声传播远、衰减少,一旦形成很难隔绝。
3.燃烧噪声:
燃烧噪声是柴油在燃烧过程中产生的结构震动和噪声。在汽缸内燃烧噪声声压级是很高的,但是,发动机结构中大多数零件的钢性较高,其自振频率多处于中高频区域,由于对声波传播频率响应不匹配,因为在低频段很高的汽缸压力级峰值不能顺利地传出,而中高频段的汽缸压力级则相对[工业电器网-cnelc]易于传出。
4.冷却风扇和排风噪声:
机组风扇噪声是由涡流噪声和旋转噪声组成的,旋转噪声由风扇的叶片切割空气***生周期性扰动而引起;涡流噪声是气流在旋转的叶片截面上分离时产生的,由于气体的粘性引起的旋涡流,辐射一种非稳定的的流动噪声。排风噪声、气流噪声、风扇噪声、机械噪声均是通过排风的通道辐射出去的。
5.进风噪声:
柴油发电机组在正常工作的时候需要有足够的新风供应,一方面保证发动机的正常工作,另一方面要给机组创造良好的散热条件,否则机组无法保证其使用性能。机组的进风系统基本包括进风通道和发动机本身的进气系统,机组的进风通道必须能够使新风顺畅的进入机房,同时机组的机械噪声、气流噪声也可以通过这个进风通道辐射到机房外面。
6.发电机噪声:
发电机噪声包括定子和转子之间的磁场脉动引起的电磁噪声,以及滚动轴承旋转所产生的机械噪声。
根据以上对柴油发电机组的噪声分析。一般对于发电机组的噪声采用以下两种处理方法:
油机房进行降噪声处理或者采购时采用防音型机组。
空间。
版权所有©2025 天助网