厌氧颗粒污泥培养
通过灰色关联度分析,厌氧污泥颗粒化影响的重要程度:液体上升流速 HRTOLR进水COD。扫描电子显微镜(scanning electron microscope, SEM)、X射线能谱(energy dispersive spectrometer, EDS)和X射线衍射(X-ray diffraction, XRD)分析流失污泥和截留污泥,结果表明:液体上升流速使颗粒污泥受到颗粒碰撞摩擦力和水流剪切力作用,影响颗粒污泥的表面粗糙度、污泥形状和完整度;有机底物特性影响颗粒污泥的结构、组成和形成;底物的复杂性影响颗粒污泥的微生物多样性。
厌氧颗粒污泥规模化培养及其形成机制研究
外源厌氧颗粒污泥(R1反应器)历时12周完成启动,OLR为7.4kg COD·m~(-3)·d~(-1)、出水COD约为450mg·L~(-1)和COD去除率为80%。剩余活性污泥(R2反应器)历时30周颗粒化完成,OLR为8.8kg COD·m~(-3)·d~(-1)左右、出水COD约为240mg·L~(-1)和COD去除率为90%。在R1和R2中,挥发性脂肪酸(volatile fatty acids, VFA)分别是200mg·L~(-1)和100mg·L~(-1)左右(以乙1酸计),VFA/碱度的比率分别为0.3和0.15,甲1烷浓度分别是77.2%和78.6%,R1中EPS浓度从36.4mg·g SS~(-1)增加到36.8mg·g SS~(-1),R2中EPS浓度从22.5mg·g SS~(-1)增加到46.1mg·g SS~(-1)。R1大部分颗粒为1.5~2.5mm,粒径分布单一,而R2中厌氧颗粒化表现出不同规格0.0~0.3mm、0.3~0.5mm、0.5~1.5mm和1.5~2.5mm的颗粒,颗粒粒径分布差异性缩小。通过计算和比较Grau second-order动力学模型和修正的Stover–Kincannon动力学模型,确定剩余活性污泥可以做接种污泥代替厌氧颗粒污泥来启动厌氧反应器,并且能够取得较高的运行效能和实现厌氧污泥颗粒化,从而建立一种高活性厌氧颗粒污泥的规模化培养系统。
厌氧颗粒污泥的形成及其特性的试验研究
容积21升的小型厌 氧升流式污泥层(UASB)反应器内污泥在35±1℃下的颗粒化过程。进料分别用工业葡萄糖液和啤酒厂废水,接种污泥用双层沉淀池消化污泥。颗粒污泥的培 养过程可分为三个阶段:启动运行阶段、颗粒污泥出现阶段和颗粒污泥成熟阶段。颗粒污泥直径约0.1~2毫米,比重约1.05,在反应器中的 SVI 为21毫升/克 SS,zui大 COD 去除速率为1.2~1.9克 COD/克 VSS·日,辅酶 F_(420)含量在0.13~0.29微摩尔/克 VSS,有很好的沉降性能和产甲1烷活性。污泥颗粒化后的反应器处理啤酒厂废水的 COD 容积负荷达30公斤/米~3·日,COD 去除率90%左右
版权所有©2024 天助网