一般房屋的屋顶,不是平的就是斜坡形的,唯独天文台的屋顶与众不同,远远望去,银白色的圆形屋顶好象一个大馒头,在阳光照耀下,闪闪发光。为什么天文台要造成圆顶结构呢?难道是为了好看?不,天文台的圆顶完全不是为了好看,而是有它特殊的用途。
我们看到的这些银白色的圆顶房屋,实际上是天文台的观测室,它的屋顶呈半圆球形。走近一看,半圆球上却有一条宽宽的裂缝,从屋顶的高出一直裂开到屋的地方。哪里是什么裂缝,原来是一个巨大的天窗,庞大的天文望远镜就通过这个天窗指向辽阔的太空。
正是因为中微子与其他物质之间的 相互作用极其微弱,所以很难对它进行检测。直到1956年,美国物理学家莱茵斯才在一个核反应堆发射的 中微子洪流中,通过特殊的 方法验证了中微子的 存在。1995年,莱茵斯因这项成果而获得了诺贝尔物理学奖。
那么,中微子与天文学研究有什么关系 呢?中微子是除了电磁波外,携带着宇宙中核反应信息的 另一位信使,因为天体的 核反应会发射出中微子。中微子可以穿越星 系 ,且不与充满宇宙的 电磁波辐射发生相互作用。星 系 的 磁场也不会对它们产生影响。这些特殊的 性质使得中微子可用于研究深空中所发生的 一些天文现象。有些天文现象是占星术上的热门话题,事实上观测天文现象是研究和拍摄天体的好机会,例如小行星掩星的联合观测可测定小行星的形状和大小。
建造在地下的 中微子探测器
如果我们想要通过中微子去探索太空,那么我们必须要解决两个问题。个问题是我们已经谈论过的 :中微子与其他物质的 相互作用极其微弱。解决这个问题的办法比较简单,就是可以把大量的物质放入一个大容器中,增加两者发生相互作用的概率。解决这个问题的 办法比较简单,就是可以把大量的 物质放入一个大容器中,增加两者发生相互作用的 概率。第2个问题就比较微妙了。当我们“检测”到一颗中微子的 时候,我们实际上并没有发现或捕到这颗中微子,而是发现一颗原子发生了某种非同寻常的 变化。研究人员把出现这种奇特的 现象归因于一颗看不见的 中微子。
如果科学家要用超纯水来检测来自深空的 中微子,假定槽罐的 长度为数十米,那么也许不得不等上数十年才能检测到一颗中微子。因此,要提高检测效率,所需槽罐的 长度将不是以米来计量,而是要长达数千米。
于是,科学家想到了一个新的 创意:利用南极冰原厚达数千米的 天然冰层建造中微子探测器。这台探测器被称为“冰立方”中微子探测器,是迄今为止建造的 壮观的 天文探测器。在这台仪器中,冰起着以往研究中超纯水的 作用,它既是靶体,又是观测介质。
版权所有©2024 天助网