车牌定位是指在经过图像预处理操作后的灰度图像中判断出车辆车牌所在的区域,而车牌分割是指在完整的车辆图像中把本设计所要的车牌区域的图像分割出来,为下一步的字符识别操作做准备。车牌图像处理后的灰度图是一个水平度很高的矩形图样,在预处理图中比较集中,且字符的灰度值和相邻字符图样有较明显差别,因此很容易用边缘算法检测操作来对图像进行分割。我们将总结这些问题,并在适当的时候与供应商捷顺科技进行沟通,以寻求解决方案。车牌定位和分割的***度将直接影响到终的字符识别的好坏。
车牌识别技术和定位系统的研究,在我国已经有十余年的发展,该系统目前应用仍处于起步阶段,该系统采用成熟的大规模投资还没有出现,车牌识别系统作为提高交通管理的有效工具,技术水平依然需要完善。当今许多实际应用场合,如在繁忙交通路口临时对欠税费、报废、挂失等车辆的稽查,则监视区域比较复杂,现有识别方法无法直接应用;而且多数情况下,同时出现多辆汽车,背景有广告牌、树木、建筑物、斑马线以及各种背景文字等,现有的识别方法也不能很好适应多变的环境。车牌自动采集和管理及其他相关信息流量管理,园区车辆管理,停车场管理,交jing督察和重大意义等方面,并成为信息处理技术的一个重要的研究课题。因为算法简单所以算法的速度较快,只要在前期的预处理中降噪做得比较好,这种算法的识别率也相对较高,是一种简单、快速、有效的字符识别技术,商用价值较高。
车牌的底色检测
车牌颜色不是单一的,所以在识别的过程中我们还需要对车牌的颜色予以区分。通过我们对车辆车牌的研究发现,车牌的底色一般为蓝色或者黄色,而车牌上字符的颜色一般为白色或者是黑色。车牌不是单一颜色的,如果是那么我们就没办法识别了,因此,我们需要对车牌的颜色予以区分。我们采取这样的方法确定字符的左右坐标和宽度,就可以对字符进行分割。本设计采用的是RGB 模型检测方法,具体的方法就是将检测得到的像素点与 RGB 模型进行比对,就可以得出车牌的颜色。
汽车牌照的识别定位:对汽车牌照范围内的定位是识别车牌整个过程中的重点,假若汽车牌照的定位出现偏差,会直接影响后面的字符分割及字符识别效果。汽车牌照定位的关键点为纹理特征的分析定位方法,该方法在经过预处理之后对灰度图像进行扫描,经过扫描后断定包含汽车牌照的线段的待选区域,后确定此范围内的起始坐标和坐标高度以及列坐标和坐标的宽度,从而判断出整个汽车牌照的区域,这就完成了对图像中的全部汽车牌照实现了定位。3)由自动识别系统的检索模块对车牌图像进行搜索与检测,在定位出包含牌照字符的长方形形区域的基础上对上述矩形区域进行分割。
版权所有©2025 天助网