普通旺铺
陆丰步进电机驱动 ic 芯片***在线为您服务「在线咨询」
来源:2592作者:2020/10/30 11:26:00






MOSFET几种典型驱动电路(一)


MOSFET数字电路

数字科技的进步,如微处理器运算效能不断提升,带给深入研发新一代MOSFET更多的动力,这也使得MOSFET本身的操作速度越来越快,几乎成为各种半导体主动元件中快的一种。MOSFET在数字信号处理上的成功来自CMOS逻辑电路的发明,这种结构好处是理论上不会有静态的功率损耗,只有在逻辑门(logic gate)的切换动作时才有电流通过。随著半导体制造技术的进步,对于整合更多功能至单一芯片的需求也跟著大幅提升,此时用MOSFET设计模拟电路的另外一个优点也随之浮现。CMOS逻辑门基本的成员是CMOS反相器(inverter),而所有CMOS逻辑门的基本操作都如同反相器一样,在逻辑转换的瞬间同一时间内必定只有一种晶体管(NMOS或是PMOS)处在导通的状态下,另一种必定是截止状态,这使得从电源端到接地端不会有直接导通的路径,大量节省了电流或功率的消耗,也降低了集成电路的发热量。





MOSFET在数字电路上应用的另外一大优势是对直流(DC)信号而言,MOSFET的栅***阻抗为***大(等效于开路),也就是理论上不会有电流从MOSFET的栅***流向电路里的接地点,而是完全由电压控制栅极的形式。这让MOSFET和他们的竞争对手BJT相较之下更为省电,而且也更易于驱动。的通用芯片是74HC595,具有8位锁存、串一并移位寄存器和三态输出功能。在CMOS逻辑电路里,除了负责驱动芯片外负载(off-chip load)的驱动器(driver)外,每一级的逻辑门都只要面对同样是MOSFET的栅极,如此一来较不需考虑逻辑门本身的驱动力。相较之下,BJT的逻辑电路(例如常见的TTL)就没有这些优势。MOSFET的栅极输入电阻***大对于电路设计工程师而言亦有其他优点,例如较不需考虑逻辑门输出端的负载效应(loading effect)。



驱动电路时应考虑哪些因素

近几年来MOSFET和IGBT在变频调速装置、开关电源、不间断电源等各种、低损耗和低噪音的场合得到了广泛的应用。高可靠性常见的led路灯是采用led驱动电源,它的维修费用高,维修也不方便2。这些功率器件的运行状态直接决定了设备的优劣,而性能良好的驱动电路又是开关器件***运行的重要保障。在设计MOSFET和IGBT的驱动电路时,应考虑一下几个因素:

(1)要有一定的驱动功率。也就是说,驱动电路能提供足够的电流,在所要求的开通时间和关断时间内对MOSFET和IGBT的输入电容Ciss充电和放电。LCD的构造是在两片平行的玻璃当中放置液态的晶体,两片玻璃中间有许多垂直和水平的细小电线,透过通电与否来控制杆状水晶分子改变方向,将光线折射出来产生画面。输入电容Ciss包括栅——源之间的电容CGS和栅——漏之间的电容CGD。 MOSFET和 IGBT的开通和关断实质上是对其输入电容的充放电过程e799bee5baa6e59b9ee7ad9431333337383832,栅极电压VGS的上升时间tr和下降时间tf决定输入回路的时间常数,即:tr(或tf)=2.2RCiss ,式中R是输入回路电阻,其中包括驱动电源的内阻Ri。从上式中可以知道驱动电源的内阻越小,驱动速度越快。




(2)驱动电路延迟时间要小。开关频率越高,延迟时间要越小。

(3)大功率IGBT在关断时,有时须加反向电压,以防止受到干扰时误开通。

(4)驱动信号有时要求电气隔离。

以PWM DC-DC全桥变换器为例,其同一桥臂的两只开关管的驱动信号S上和S下相差1800,是刚好相反的,即一只开关管开通,另一只开关管要关断,或者同时关断。其中,两只上臂的开关管之间和下臂的开关管必须隔离。在CMOS逻辑电路里,除了负责驱动芯片外负载(off-chipload)的驱动器(driver)外,每一级的逻辑门都只要面对同样是MOSFET的栅极,如此一来较不需考虑逻辑门本身的驱动力。对于中小功率的驱动电路,用脉冲变压器的方法实现隔离为简单,而在大功率的应用场合,则要使用集成驱动器驱动。



igbt驱动电路的简介

IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

图1所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。IGBT的控制、驱动及保护电路等应与其高速开关特性相匹配,另外,在未采取适当的防静电措施情况下,G—E断不能开路。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。



IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。液晶显示器的分辨率越来越高,这就意味着扫描列数的增加,GateDriverIC必须不断提高开关频率,SourceDriverIC必须不断提高扫描频率。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。



用什么直流电机驱动芯片(一)

瑞泰威公司生产的ML4428无刷直流电机无传感器PWM智能控制器的内部结构,它是无位置传感器无刷直流电动机控制的简易方法,该控制器内部的反电势电路、起动及换向逻辑电路、限流比较器和保护电路简化了无位置传感器无刷直流电动机的控制,做到单独控制的正反向运行,起动时无反转,采用PWM控制或噪声的线性控制,可获得。不过如果压降不大或者电流小,线性驱动的电流稳定,道并且用的原件要远远少于开关的。




1 引言

无刷直流电机具有体积小、重量轻、维护方便、节能、易于控制等一系列优点,被广泛应用于各个领域。传统的无刷直流电机大多以霍尔元件或其它位置检测元件作位置传感器,但位置传感器维修困难,且霍尔元件的温度特性不好,导致系统可靠性变差。3、占空比就象上面所说的“性能原则”“只要可能,要求应由性能特性来表达,而不用设计和描述特性来表达,这种方法给技术发展留有余地”。因此,无位置传感器无刷直流电机成为理想选择,并具有广阔的发展前景,但它的控制电路相当复杂。ML4428控制芯片的出现,简化了控制电路的设计,该芯片内部含有反电势检测电路、起动换向逻辑电路和保护电路,使控制器芯片只需外接少量的阻容元件就可以实现对直流无刷电动机的控制。


范清月 (业务联系人)

18002501187

商户名称:深圳市瑞泰威科技有限公司

版权所有©2024 天助网