粮食烘干风机噪声治理结果
采取噪声治理措施前后,大风量轴流风机进风口处噪声值对比结果如图5 所示。由图5 可知,治理前后进风口处噪声值在各倍频程处有相似的升降趋势。并且,噪声在63Hz 和125Hz 处均有明显峰值。运动方程为三维定常雷诺时均N-S方程,采用可有效解决旋转运动和二次流的Realizablek-ε湍流模型,粮食烘干风机的动叶区采用多重参考系模型。治理后进风口处的噪声值有明显降低。在63Hz 处降噪量约30dB,通过治理前后噪声的A计权测量值对比,治理后粮食烘干风机进风口噪声降噪量为27dB(A)。
山东冠熙风机所采用的粮食烘干风机弯头加折板式消声器的组合消声结构,针对该项目中大风量轴流风机的噪声消声量能够达到27dB(A),并且对低频噪声具有较好的消声效果。冷风通过粮食烘干风机仓底通风口进入仓内,由下至上通过轴流风机出口排出仓外。弯头加折板式消声器的组合消声结构,不仅能够有效的改变气流流通方向,增加通道长度,提高空气动力性噪声的消声量,而且节约空间,组合形式灵活,具有广泛的应用前景。
粮食烘干风机在同一转速下,由于动叶安装角的变化,因此其工作范围是一组特性曲线。粮食烘干风机消声器内部结构根据现场实际情况,消声器顶部设计为矩形弯头,便于安装。由于风机内部流动是复杂的三维黏性流,完全采用实验方法或三维商业软件求解其全工况下的性能费时费力且成本较高; 同时在风机工况改变,需要调整其转速和动叶角度使其满足风压和效率的要求,因此,快速准确预测出轴流风机在安装角变化时的气动性能够提高缩短设计周期和风机运行效率,具有极为重要的工程应用价值。
(1)粮食烘干风机叶顶间隙超差对失速点压力偏差和风机效率偏差有显著影响。
(2)叶顶间隙与失速点压力偏差的相关系数为-0.99,即叶顶间隙越大,失速点负压偏差越大,实际失速线向下偏离理论失速线的程度越严重。
(3)叶尖间隙与效率偏差的相关系数为-0.93。
叶尖间隙与效率也有很强的相关性,也就是说,叶尖间隙越大,负效率偏差越大。以叶片角度可调、叶片角度固定的对旋轴流风机叶轮为研究对象,建立了两种叶轮的三维模型,并引入ANSYS进行计算模型分析。得到了两个粮食烘干风机叶轮的种振型。叶片变形量较大,尤其是叶片顶部,通过角度调节机构,叶片变形量略有增加。利用LMS模态试验软件得到了两个叶轮的个固有频率。通过比较发现,叶片角度调节机构使叶轮的固有频率略有增加,粮食烘干风机叶轮的固有频率避开了电机的频率,在正常运行时不产生共振。基于轴流风机轴向可以分区的结构特点,粮食烘干风机采用分区法将流体计算区域划分为集流器区、***级动叶区、***级导叶区、第二级动叶区、第二级导叶区和扩压器等6个部分,因为动叶区内流动较复杂,故采用尺寸函数对动叶区进行加密,而其他区域采用较为稀疏的网格。叶轮是旋转轴流风机的重要部件。其安全性和可靠性直接影响到风机的正常运行。一方面,叶轮的模态分析可以得到结构的固有频率,使叶轮的工作频率远离其固有频率,有效地避免了共振引起的疲劳损伤;另一方面,可以得到叶轮机构在不同频率下的振动模态。变形较大的区域可能出现裂纹、松动、零件损坏等,变形较小。该地区在工作中相对稳定。
在风机叶片断裂的正常运行过程中,轴流风机普遍受到离心力和动应力的影响。前者由于叶轮转动而产生离心现象,后者则导致叶片弯曲现象。通常情况下,轴流风机在运行过程中长期处于失速状态是造成风机叶片断裂的主要原因。由于轴流风机运行中存在旋转失速问题,此时转轮属于失速区,会导致粮食烘干风机叶片的背压和前压发生不同程度的变化,导致叶片原始受力情况发生变化。风机前后气流稳定,声功率级略低于原叶片,一级叶轮顶部声功率级也略低,减少了叶尖泄漏现象。如果风机叶片断裂,将严重影响整个轴流风机在运行过程中的质量。轴承温度高也是电厂轴流风机运行中的一个常见障碍。导致轴流风机轴承温度升高的主要原因有三个。个原因是润滑不良。
当轴流风机运行中使用的润滑油量小于规定值时,会导致轴承箱和原有内部润滑油之间的润滑油交换不足。粮食烘干风机在运行过程中会出现异常升温现象。第二个原因是冷却风扇的影响。造成这个问题的主要原因是引风机的烟温通常比较高。如果使用后不及时处理,轴承温度会异常升高。由项目实际考察情况得到,粮食烘干风机所在位置距敏感建筑仅15m,风机进风口正对敏感建筑。因此,使用后必须注意冷却整个机器,避免因冷却器内容物少而导致冷却不足的问题。第三个原因是轴承箱的影响。轴承箱在使用前通常需要根据社会要求进行组装。轴承箱内缸与轴承外套之间的间隙要求很高。由于二者之间的间隙过小,引风机轴承热膨胀后,容易对粮食烘干风机轴承的径向和轴向膨胀位移产生一定的影响,导致摩擦力增大,轴承温度异常升高。
温升=较高轴承温度-进油温度引起粮食烘干风机轴承温度高的主要原因如下:
(1)进油量太小。对策是将润滑油供给的进油口和油压调整到0.3-0.4兆帕左右。
(2)进油温度高。对策:拆除油站配套的温控阀,通过手动阀直接调节冷却器的进油量和旁路流量(一般情况下,冷却器旁路阀完全关闭,所有润滑油进入冷却器冷却)。检查并清洁冷却器,降低机油温度,必要时增加冷却器的传热面积。随着对旋风机的广泛应用,风机的振动和噪声除性能外,越来越受到人们的重视。例如,我公司三台一次风机每年夏季的轴承温度都在80度以上。主要原因是冷却器换热面积不够,轴承进油温度高。之后针对原冷却器设计容量过小的问题,增加了一台冷却器,解决了一次风机夏季轴承温度过高的问题。
风机振动大的主要原因如下:粮食烘干风机风扇叶片严重损坏。如果2011年2月发现一次风机2A振动过大,计划4月回厂进行C级大修。结果在修复和打开盖子后,发现和第二刀片被异物严重损伤。除了48个刀片中的4个外,其余44个刀片已损坏。2012年送风机1a发生多次喘振,经测量风机消声器出口风压至-3kpa,判断消声器堵塞。原因是风机进口消声器等铁件长期运行,导致振动脱落,损坏叶片。由于制造厂在机组检修过程中不能立即提供备件,故对叶片损坏部件进行了修复,着色检查未发现根部裂纹。直到6月叶片供应时,半侧风机组才停止运行,更换了粮食烘干风机叶片。更换叶片后风扇振动正常。
版权所有©2024 天助网