地上通风笼的作用
轴流风扇功率低,风压低。结果表明,在通风过程中,每个风道系统的中部和侧部区域存在不同程度的死区。通过谷物堆的气流速度缓慢,谷物水分不会被带走,谷物水分损失会减少。另外,气流在颗粒堆中缓慢移动,这不易导致颗粒转移中的水分分层。因此,轴向气压负压慢速通风有利于粮食保湿和安全储存。小麦筒仓前的水分为11.9%,通风后的水分为11.8%,水分损失仅为0.1%。试验箱总通风量为426h,耗电量为778.1度,小麦仓库能耗为0.027kW·h /(°C·t),低于地上笼式通风机组能耗。 0.04kW·H /(℃·T)。在轴流风机负压的作用下,颗粒堆中的湿热空气通过通风口从通风口排出,冷热界面位于轴流风机的出风口,降低了可能性在谷物堆上的冷凝。因此,轴流风扇负压慢速通风方法更安全,降低了粮食储存的温度。
目前,***的机械通风管道设计成对称形式,如一机两型(普通U型),一机三通型,一机四通型,土壤型和主型。经验丰富的保管人员知道,风管系统的不同布局对谷物储存的冷却效果有较大差异。针对垂直通风系统的缺点,国家粮食管理科学技术研究所的***通过反复试验和试验,开发了一种水平通风系统。上图显示了机械通气72小时后四个常见风道系统中每个系统的温度分布。结果表明,在通风过程中,每个风道系统的中部和侧部区域存在不同程度的死区;然而,随着通风时间的延长,死区逐渐减少并消失。风管的布置是影响机械通风效果的主要因素。因此,风道的布局应避免通风分支的风道面向风扇的进风口。此外,应尽量减少管道中的弯曲和三通的数量,以减少通风的流动能量损失。为了确保风量的均匀分布,可以使用风道来均匀地分配每个支管的通风。温度分布图显示,在3m范围内,全谷物仓库的温度变化较大,温度上升较快,这是一个危险区域。因此,调整机械通风的风量和风压分布以匹配实际情况可以实现有效的冷却。基于以上总结,为什么不尝试改进设计 - 小型U形风管!见下文。主进气管沿45°方向进入,然后两个管道空气管道对称地分开两侧 - 其中一个风道是直的,另一个风道包括两个部分,但总长度相等到直管风管。根据粮食储存机械通风技术规定,小型U型风管的设计布局完全符合粮食储存的实际温度场特征,是一种反对称布局。小的U形管道系统减少了弯头的存在,改善了T形结构,并且不需要空气分配器。
据了解,目前北京分公司仅有970个仓库和19个直属仓库,采用内循环流量控制技术,实现了455万吨粮食的低温(准低温)绿色储存; 63个氮气储存仓库的应用。工作时,风扇用于通过单管空气通道将低温低湿空气压入谷物堆中,或者将谷物堆中的高温高湿空气从谷物中抽出桩达到散热和除湿的目的。粮食规模为28万吨;采用147台空调温控仓库,粮库储存量70万吨。目前,北京分公司直属的粮食科技储存规模已从2014年底的15%增加到100%。在中间储粮系统中,帅首先实现了科技粮库的***覆盖。同时,北京分公司还向当地仓储企业推广粮食储存技术,并向88家本地企业推广内循环温控技术。仓库外中央粮食技术覆盖率达到95%。在沧州北京分公司仓储分店的直接仓库中,记者看到,干净整洁的仓库区有三种不同形状的粮仓,包括氮气,内循环温度控制和智能。通风等不同技术实现科技粮食储存。
版权所有©2025 天助网