视觉传感器成为快速启动和运行的视觉解决方案
节省时间和成本 与智能相机相比,视觉传感器通常更小、成本更低且更简单,这使视觉传感器成为快速启动和运行的视觉解决方案之一。实际上,完全零经验的操作工,进行视觉传感器操作培训可能只需半小时就能学会启动和操作。此外,通常不需要几分钟即可安装带有车载显示器的视觉传感器,而无需PC进行编程。带有集成照明的设备可以更轻松地设置基本视觉检查,而无需其他设备。
电容位移传感器测量轴瓦厚度滑动轴承常见失效
电容位移传感器测量轴瓦厚度 滑动轴承常见失效形式有: 1.瓦面腐蚀:光谱分析发现有色金属元素浓度异常;谱中出现了许多有色金属成分的亚微米级磨损颗粒。 2.轴颈表面腐蚀:光谱分析发现铁元素浓度异常,铁谱中有许多铁成分的亚微米颗粒。 3.轴颈表面拉伤:铁谱中有铁系切削磨粒或黑色氧化物颗粒,金属表面存在回火色。 4.瓦背微动磨损:光谱分析发现铁浓度异常,铁谱中有许多铁成分亚微米磨损颗粒。 5.轴承表面拉伤:铁谱中发现有切削磨粒,磨粒成分为有色金属。 6.瓦面剥落:铁谱中发现有许多大尺寸的疲劳剥落合金磨损颗粒、层状磨粒。 7.轴承烧瓦:铁谱中有较多大尺寸的合金磨粒及黑色金属氧化物。 综上所述,轴瓦的整体厚度必须控制在一定范围内,以确保日后使用过程中,轴瓦与轴颈之间的良好润滑,避免不正常的机械接触。目前国际轴瓦厂商都在对轴瓦的厚度进行精密检测。成熟的测量方法是采用电容型位移传感器,两两正对安装,在不同位置测量轴瓦的厚度,并将测量值进行比较分析,以求剔除不合格的轴瓦部件。 采用电容位移传感器可以达到亚微米的精度,且测量稳定性非常高。德国米铱公司提供的capaNCDT65xx系列被广泛应用于轴瓦厚度测量领域,精度可达亚微米级别,获得了客户的高度评价。
电涡流传感器测量原理根据法拉第电磁感应原理
电涡流传感器测量原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时(与金属是否块状无关,且切割不变化的磁场时无涡流),导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗), 这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ,ξ,б,D,I,ω)函数来表示。通常我们能做到控制τ,ξ,б,I,ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。
版权所有©2025 天助网