在旋转状态下叶片承受很大的离心力,增加了刚度,因此,一般情况下叶片的动频率高于其”频率,式中几为工作条件下的动频率;人为室温条件下的静频率;E:、凡。因此,有必要在叶片的设计过程中建立合适的有限元模型并进行振动固有特性分析和响应分析。分别为工作温度和室温时叶片材料弹性模量;B称为动频系数.f.和B可由计算或试验求得。叶片团有绷率计算上面讨论了叶片的激振力频率和叶片振动的危险振型。为了防止在运行中产生这些危险振动,必须算出与其相应的叶片固有频率,以便在叶片设计中充分考虑将它们与激振力频率调开。叶片固有频率有各种计算方法,各有其适用的范围。叶片作为弹性梁振动方程的解,计算公式简单,适用于直叶片;能t法计算扭叶片的基调频率方便可行;中等叶高成组扭叶片可采用改进的变形谐调法。随着电子计算机的广泛应用和计算技术的发展,长叶片普遍采用弯扭联合振动法和有限元法计算叶片频率及振型,使计算值更接近于实际值。
叶片是航空发动机的主要零件之一,其结构强度直接影响到发动机的工作效率和运行可靠性。因此通过大量的统计分析,用经修正后的材料耐振强度和蒸汽弯应力之比作为叶片振动强。叶片的工作环境比较恶劣,除了承受高速旋转的气动力、离心力和振动负荷外,还要受到热应力的作用,很容易发生故障。以航空发动机为例,据统计振动故障率占发动机中总故障率的60%以上,而叶片振动故障率又占振动故障率的70%以上。因此,有必要在叶片的设计过程中建立合适的有限元模型并进行振动固有特性分析和响应分析。本文针对叶片固有特性和振动响应的分析方法进行研究。首先对叶片固有特性分析方法和振动响应分析方法进行了综合性评述。
在总结前人对叶片固有特性和振动响应分析方法的基础上,采用解析法和有限元方法相结合,准确预估和分析叶片固有特性,采用CFD应用软件FLUENT对叶片进行三维流场的模拟,在此基础上对叶片进行振动响应分析。利用有限元方法分析了某径流式涡轮增压器叶片的振动特性,得出了叶片的各阶自振频率及相应振型,计算结果与实验结果较为吻合。本文的主要研究内容大致可以归为以下几个方面:(1)研究叶片振动的解析计算方法,在叶片扭向角不大的情况下,通过建立一些假设将叶片视为变截面梁,利用经典的梁弯曲和梁扭转理论计算叶片的振型和自振频率。(2)采用ANSYS有限元软件,对叶片进行固有模态分析和带有预应力情况下的模态分析,并对两种情况下的结果进行了对比,其中考虑了转速不同时的离心力对叶片固有特性的影响,并绘制Campbell图。(3)采用FLUENT对叶片作流场分析,分析了叶片流场速度、压力等沿叶片径向分布情况,并研究了不同转速对叶片流场速度、压力的影响。(4)基于叶片流场分析的结果,应用ANSYS软件,对考虑S1、S2气动加载和集中载荷加载三种情况下的叶片振动响应进行了计算和分析。本文对叶片固有特性和振动响应分析方法研究实现了叶片振动解析法和考虑S1、S2气动加载、集中载荷加载振动响应的计算,对叶片的初期设计有重要的意义。
版权所有©2025 天助网