叶片静频及应力分布测量
对转子叶片***行了振动试验,分别测定了叶片***阶模态的频率及振型,结果发现,当激起同样的叶尖振幅时,有几种振型所需的激振力小,对这些振型重点测量。 由于受到引电器通道数的限制,需要尽量减少实测时叶片上的应变片数目,因此,在振动台上进行的应力分布试验确定台架实测时应变片的具体粘贴位置及方向,只在大主应力点上粘贴应变片。由于受到引电器通道数的限制,需要尽量减少实测时叶片上的应变片数目,因此,在振动台上进行的应力分布试验确定台架实测时应变片的具体粘贴位置及方向,只在大主应力点上粘贴应变片。
对运行的叶片进行振动特性校核,其固有颇率及振型可通过实测确定。叶片静频测量常用方法有自振法和共振法。叶片动态振动测量,在电厂中对运行机组用无线电遥测技术测量叶片动频率和动应力。汽轮机叶片报动强度安全准则判别汽轮机叶片工作中抗振安全性的设计和考核依据。叶片振动强度安全准则的基本思想,就是保证叶片振动的动应力幅值小于叶片材料耐振强度(复合疲劳强度),并有一定的安全裕量。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。但一般情况下动应力幅值与叶片蒸汽弯应力有密切关系。因此通过大量的统计分析,用经修正后的材料耐振强度和蒸汽弯应力之比作为叶片振动强。
风电机组的叶片上安装振动加速度传感器。由于风速变化而引起叶片在轴向方向上产生振动,该振动加速度传感器能够对叶片振动的加速度数值进行采集测量,反应叶片振动的运动性质。由于风电机组的机舱工作受到风速流动的推力和压力,以及温度变化等方面的影响,应采取工作频率范围较宽、坚固耐用以及受到外界干扰较小的传感器。叶片振动强度安全准则的基本思想,就是保证叶片振动的动应力幅值小于叶片材料耐振强度(复合疲劳强度),并有一定的安全裕量。本风电机组振动液压控制系统采用压电式加速度传感器,它具有压电材料受力产生电荷信号无需外界电源、抗干扰能力强、对工作环境不敏感的特点,利用弹簧质量系统原理,在传感器芯体质量受到振动加速度作用后产生一个与该加速度成正比的力,传感器的压电材料受此力作用后在其表面上形成与这一力成正比的电荷信号,完成对塔筒前后加速度的测量。
叶片是叶轮机械的关键零部件,其工作环境恶劣,同时受高离心力、稳定气流力和交变气流激振力的作用,是故障多发件。叶片失效原因主要有机械损伤、高温损伤、高温暴露、蠕变失效、疲劳失效和腐蚀。其中疲劳失效是重要的一个原因,它往往导致叶片断裂。研究叶片的减振方法有较大的工程意义。目前已有一些较成熟的减振技术,如干摩擦阻尼和蜂窝密封减振,前者通过特殊的结构设计达到减振的目的,后者则能加剧气流扰动,提高气流的能量耗散,减小气流激振。这些方法虽有明显的减振作用,但效果有限,且其结构固定,无法实现参数的调整。叶片是风电机组的主要部件,其结构强度直接影响到风电机组的工作效率和运行可靠性。另外,有学者研究应用反旋流措施来提高转子稳定性,通过向密封间隙喷入逆向气流来减小密封间隙内的旋流。反旋流只有在合适的流速和流量下才能起到抑振的作用,否则就会导致振动失稳,且反旋流结构复杂,设计时计算困难,因此其工程应用并不多。本文研究的吸气方法从新的角度来改善叶顶间隙的气流特性,较反旋流技术有较大的优势。
版权所有©2025 天助网